IACS Computes! High School summer camp
Day 1
Day 2
Day 3
Day 4
Day 5
Day 6
Day 7
Day 8
Day 9
This notebook is a simplified version of the notebook found here which describes the analysis used to process a gravitational wave signal. It will go through some typical signal processing tasks on strain time-series data associated with the LIGO Event data releases from the LIGO Open Science Center (LOSC).
Note: although I’ve tried to simplify this notebook a bit, it’s still highly technical. I do not in the slightest expect you to understand everything that’s going it with repect to the physics and data processing, but hopefully you should be able to understand some of the Python and get a good idea of how scientists use Python in their experiments!
Over a hundred years ago, Einstein published the Theory of General Relativity. This theory describes how what we experience as gravity is actually the bending of spacetime by objects with mass (i.e. rather that being a force as previously thought). This has many consequences, one of which is that objects with mass can emit gravitational waves. These are oscillations in spacetime produced by the movement of massive bodies, sort of like how a boat moving across a still lake will send out ripples across the surface. Unfortunately, these ripples are very very small and therefore very very hard to detect. It took scientists a hundred years to build an experiment sensitive enough to detect these gravitational waves (the LIGO detectors), and even then it’s still only able to detect waves emitted in one of the most violent events in the universe: two black holes crashing into each other.
The LIGO experiment consists of two interferometers, one in Livingston, LA, the other in Hanford, WA. Each interferometer has two arms, and along each arm is sent a laser beam. These two beams meet at the photodetector, where they produce an interference pattern. When a gravitational wave passes through the detector, this will cause spacetime to bend, slightly lengthening/shortening one of the arms with respect to the other and therefore changing the distance the laser beam has to travel. This will change the interference pattern at the photodetector.
Before scientists are able to see whether a gravitational wave has passed through the detectors, they need to process the raw data. Firstly, the data may contain noise, or unwanted data in the detected signal. Noise can come from many different sources. It could come from the experiment itself (e.g. the humming of the electricity in the wires could cause the laser beams to shake), it could come from outside sources (e.g. seismic activity could cause the experiment to shake), it could come from glitches in the experiment (e.g. the computer powering the experiment could freeze, causing it to miss some of the signal it’s supposed to be recording), etc. In this notebook, we’re going to have a look at some of the things that the LIGO scientists did to process the raw interferometer data in order to produce the gravitational wave signal.
First we need to get the necessary files, by downloading the zip file and unpacking it into single directory:
Important Make sure that you move/copy the contents of the zip file once you have unpacked it to the same directory where this notebook is running.
This zip file contains:
#-- SET ME Tutorial should work with most binary black hole events
#-- Default is no event selection; you MUST select one to proceed.
eventname = ''
eventname = 'GW150914'
#eventname = 'GW151226'
#eventname = 'LVT151012'
#eventname = 'GW170104'
# want plots?
make_plots = 1
plottype = "png"
#plottype = "pdf"
# Standard python numerical analysis imports:
import numpy as np
from scipy import signal
from scipy.interpolate import interp1d
from scipy.signal import butter, filtfilt, iirdesign, zpk2tf, freqz
import h5py
import json
# the IPython magic below must be commented out in the .py file, since it doesn't work there.
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
# LIGO-specific readligo.py
import readligo as rl
# you might get a matplotlib warning here; you can ignore it.
/Users/aliceharpole/anaconda3/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 88 from C header, got 96 from PyObject
return f(*args, **kwds)
# Read the event properties from a local json file
fnjson = "BBH_events_v3.json"
try:
events = json.load(open(fnjson,"r"))
except IOError:
print("Cannot find resource file "+fnjson)
print("You can download it from https://losc.ligo.org/s/events/"+fnjson)
print("Quitting.")
quit()
# did the user select the eventname ?
try:
events[eventname]
except:
print('You must select an eventname that is in '+fnjson+'! Quitting.')
quit()
# Extract the parameters for the desired event:
event = events[eventname]
fn_H1 = event['fn_H1'] # File name for H1 data
fn_L1 = event['fn_L1'] # File name for L1 data
fn_template = event['fn_template'] # File name for template waveform
fs = event['fs'] # Set sampling rate
tevent = event['tevent'] # Set approximate event GPS time
fband = event['fband'] # frequency band for bandpassing signal
print("Reading in parameters for event " + event["name"])
print(event)
Reading in parameters for event GW150914
{'name': 'GW150914', 'fn_H1': 'H-H1_LOSC_4_V2-1126259446-32.hdf5', 'fn_L1': 'L-L1_LOSC_4_V2-1126259446-32.hdf5', 'fn_template': 'GW150914_4_template.hdf5', 'fs': 4096, 'tevent': 1126259462.44, 'utcevent': '2015-09-14T09:50:45.44', 'm1': 41.743, 'm2': 29.237, 'a1': 0.355, 'a2': -0.769, 'approx': 'lalsim.SEOBNRv2', 'fband': [43.0, 300.0], 'f_min': 10.0}
We will make use of the data, and waveform template, defined above.
#----------------------------------------------------------------
# Load LIGO data from a single file.
# FIRST, define the filenames fn_H1 and fn_L1, above.
#----------------------------------------------------------------
try:
# read in data from H1 and L1, if available:
strain_H1, time_H1, chan_dict_H1 = rl.loaddata(fn_H1, 'H1')
strain_L1, time_L1, chan_dict_L1 = rl.loaddata(fn_L1, 'L1')
except:
print("Cannot find data files!")
print("You can download them from https://losc.ligo.org/s/events/"+eventname)
print("Quitting.")
quit()
/Users/aliceharpole/anaconda3/lib/python3.6/site-packages/h5py/_hl/dataset.py:313: H5pyDeprecationWarning: dataset.value has been deprecated. Use dataset[()] instead.
"Use dataset[()] instead.", H5pyDeprecationWarning)
He we’re going to look at the raw data from the Hanford (H1) and Livingston (L1) detectors. First we shall print the timeframe of the signal and look at the properties of the measured strain. Strain is the ratio of the change in length of the laser beam to the original length. If a gravitational wave has passed through the detector, then this will cause the strain to increase.
# both H1 and L1 will have the same time vector, so:
time = time_H1
# the time sample interval (uniformly sampled!)
dt = time[1] - time[0]
# Let's look at the data and print out some stuff:
print('time_H1: len, min, mean, max = ', \
len(time_H1), time_H1.min(), time_H1.mean(), time_H1.max() )
print('strain_H1: len, min, mean, max = ', \
len(strain_H1), strain_H1.min(),strain_H1.mean(),strain_H1.max())
print( 'strain_L1: len, min, mean, max = ', \
len(strain_L1), strain_L1.min(),strain_L1.mean(),strain_L1.max())
#What's in chan_dict? (See also https://losc.ligo.org/tutorials/)
bits = chan_dict_H1['DATA']
print("For H1, {0} out of {1} seconds contain usable DATA".format(bits.sum(), len(bits)))
bits = chan_dict_L1['DATA']
print("For L1, {0} out of {1} seconds contain usable DATA".format(bits.sum(), len(bits)))
time_H1: len, min, mean, max = 131072 1126259446.0 1126259461.999878 1126259477.9997559
strain_H1: len, min, mean, max = 131072 -7.044665943156067e-19 5.895522509246437e-23 7.706262192397465e-19
strain_L1: len, min, mean, max = 131072 -1.8697138664279764e-18 -1.0522332249909908e-18 -4.60035111311666e-20
For H1, 32 out of 32 seconds contain usable DATA
For L1, 32 out of 32 seconds contain usable DATA
# plot +- deltat seconds around the event:
# index into the strain time series for this time interval:
deltat = 5
indxt = np.where((time >= tevent-deltat) & (time < tevent+deltat))
print(tevent)
if make_plots:
plt.figure()
plt.plot(time[indxt]-tevent,strain_H1[indxt],'r',label='H1 strain')
plt.plot(time[indxt]-tevent,strain_L1[indxt],'g',label='L1 strain')
plt.xlabel('time (s) since '+str(tevent))
plt.ylabel('strain')
plt.legend(loc='lower right')
plt.title('Advanced LIGO strain data near '+eventname)
plt.savefig(eventname+'_strain.'+plottype)
1126259462.44
The data are dominated by low frequency noise; there is no way to see a signal here, without some signal processing.
First, we’re going to plot these in what’s called the Fourier domain. This is a fancy way of saying that we’re going to plot the strain as a function of the frequency. A way to visualize the frequency content of the data is to plot the amplitude spectral density, ASD.
The ASDs are an estimate of the “strain-equivalent noise” of the detectors versus frequency, which limit the ability of the detectors to identify GW signals.
There’s a signal in these data! For the moment, let’s ignore that, and assume it’s all noise.
make_psds = 1
if make_psds:
# number of sample for the fast fourier transform:
NFFT = 4*fs
Pxx_H1, freqs = mlab.psd(strain_H1, Fs = fs, NFFT = NFFT)
Pxx_L1, freqs = mlab.psd(strain_L1, Fs = fs, NFFT = NFFT)
# We will use interpolations of the ASDs computed above for whitening:
psd_H1 = interp1d(freqs, Pxx_H1)
psd_L1 = interp1d(freqs, Pxx_L1)
# Here is an approximate, smoothed PSD for H1 during O1, with no lines. We'll use it later.
Pxx = (1.e-22*(18./(0.1+freqs))**2)**2+0.7e-23**2+((freqs/2000.)*4.e-23)**2
psd_smooth = interp1d(freqs, Pxx)
if make_plots:
# plot the ASDs, with the template overlaid:
f_min = 20.
f_max = 2000.
plt.figure(figsize=(10,8))
plt.loglog(freqs, np.sqrt(Pxx_L1),'g',label='L1 strain')
plt.loglog(freqs, np.sqrt(Pxx_H1),'r',label='H1 strain')
plt.loglog(freqs, np.sqrt(Pxx),'k',label='H1 strain, O1 smooth model')
plt.axis([f_min, f_max, 1e-24, 1e-19])
plt.grid('on')
plt.ylabel('ASD (strain/rtHz)')
plt.xlabel('Freq (Hz)')
plt.legend(loc='upper center')
plt.title('Advanced LIGO strain data near '+eventname)
plt.savefig(eventname+'_ASDs.'+plottype)
NOTE that we only plot the data between f_min = 20 Hz and f_max = 2000 Hz.
Below f_min, the data are not properly calibrated. That’s OK, because the noise is so high below f_min that LIGO cannot sense gravitational wave strain from astrophysical sources in that band.
The sample rate is fs = 4096 Hz (2^12 Hz), so the data cannot capture frequency content above the Nyquist frequency = fs/2 = 2048 Hz. That’s OK, because our events only have detectable frequency content in the range given by fband, defined above; the upper end will (almost) always be below the Nyquist frequency. We set f_max = 2000, a bit below Nyquist.
You can see strong spectral lines in the data; they are all of instrumental origin. Some are engineered into the detectors (mirror suspension resonances at ~500 Hz and harmonics, calibration lines, control dither lines, etc) and some (60 Hz and harmonics) are unwanted. We’ll return to these, later.
You can’t see the signal in this plot, since it is relatively weak and less than a second long, while this plot averages over 32 seconds of data. So this plot is entirely dominated by instrumental noise.
The smooth model is hard-coded and tuned by eye; it won’t be right for arbitrary times. We will only use it below for things that don’t require much accuracy.
A standard metric that LIGO uses to evaluate the sensitivity of our detectors, based on the detector noise ASD, is the BNS range.
This is defined as the distance to which a LIGO detector can register a BNS signal with a single detector signal-to-noise ratio (SNR) of 8, averaged over source direction and orientation. Here, SNR 8 is used as a nominal detection threshold: we need a ratio of at least this for the signal to be classed as a real detection.
We take each neutron star in the BNS system to have a mass of 1.4 times the mass of the sun, and negligible spin (i.e. they are not rotating very fast).
GWs (gravitational waves) from BNS mergers are like “standard sirens”; we know their amplitude (how strong they are) at the source (i.e. the point when and where they’re first emitted) from theoretical calculations. The amplitude falls off like 1/r (1 divided by the distance from the source to us), so their amplitude at the detectors on Earth tells us how far away they are. This is great, because it is hard, in general, to know the distance to astronomical sources.
The amplitude at the source is a pretty complex calculation that we won’t go into the details of here. This next bit is going to do some fancy physics to try and calculate the furthest a BNS can be and still be detectable by the LIGO detectors. The distances it gives us are in megaparsecs. These are strange units of length used by astronomers. 1 parsec is about 3.26 light years, so 1 megaparsec (1 million parsecs) is 3.26 million light years. That’s quite far away!
BNS_range = 1
if BNS_range:
#-- compute the binary neutron star (BNS) detectability range
#-- choose a detector noise power spectrum:
f = freqs.copy()
# get frequency step size
df = f[2]-f[1]
#-- constants
# speed of light:
clight = 2.99792458e8 # m/s
# Newton's gravitational constant
G = 6.67259e-11 # m^3/kg/s^2
# one parsec, popular unit of astronomical distance (around 3.26 light years)
parsec = 3.08568025e16 # m
# solar mass
MSol = 1.989e30 # kg
# solar mass in seconds (isn't relativity fun?):
tSol = MSol*G/np.power(clight,3) # s
# Single-detector SNR for detection above noise background:
SNRdet = 8.
# conversion from maximum range (horizon) to average range:
Favg = 2.2648
# mass of a typical neutron star, in solar masses:
mNS = 1.4
# Masses in solar masses
m1 = m2 = mNS
mtot = m1+m2 # the total mass
eta = (m1*m2)/mtot**2 # the symmetric mass ratio
mchirp = mtot*eta**(3./5.) # the chirp mass (FINDCHIRP, following Eqn 3.1b)
# distance to a fiducial BNS source:
dist = 1.0 # in Mpc
Dist = dist * 1.0e6 * parsec /clight # from Mpc to seconds
# We integrate the signal up to the frequency of the "Innermost stable circular orbit (ISCO)"
R_isco = 6. # Orbital separation at ISCO, in geometric units. 6M for PN ISCO; 2.8M for EOB
# frequency at ISCO (end the chirp here; the merger and ringdown follow)
f_isco = 1./(np.power(R_isco,1.5)*np.pi*tSol*mtot)
# minimum frequency (below which, detector noise is too high to register any signal):
f_min = 20. # Hz
# select the range of frequencies between f_min and fisco
fr = np.nonzero(np.logical_and(f > f_min , f < f_isco))
# get the frequency and spectrum in that range:
ffr = f[fr]
# In stationary phase approx, this is htilde(f):
# See FINDCHIRP Eqns 3.4, or 8.4-8.5
htilde = (2.*tSol/Dist)*np.power(mchirp,5./6.)*np.sqrt(5./96./np.pi)*(np.pi*tSol)
htilde *= np.power(np.pi*tSol*ffr,-7./6.)
htilda2 = htilde**2
# loop over the detectors
dets = ['H1', 'L1']
for det in dets:
if det is 'L1': sspec = Pxx_L1.copy()
else: sspec = Pxx_H1.copy()
sspecfr = sspec[fr]
# compute "inspiral horizon distance" for optimally oriented binary; FINDCHIRP Eqn D2:
D_BNS = np.sqrt(4.*np.sum(htilda2/sspecfr)*df)/SNRdet
# and the "inspiral range", averaged over source direction and orientation:
R_BNS = D_BNS/Favg
print(det+' BNS inspiral horizon = {0:.1f} Mpc, BNS inspiral range = {1:.1f} Mpc'.format(D_BNS,R_BNS))
H1 BNS inspiral horizon = 169.4 Mpc, BNS inspiral range = 74.8 Mpc
L1 BNS inspiral horizon = 147.1 Mpc, BNS inspiral range = 64.9 Mpc
NOTE that, since mass is the source of gravity and thus also of gravitational waves, systems with higher masses (such as the binary black hole merger GW150914) are much “louder” and can be detected to much higher distances than the BNS range. We’ll compute the BBH range, using a template with specific masses, below.
From the ASD above, we can see that the data are very strongly “colored” - noise fluctuations are much larger at low and high frequencies and near spectral lines, reaching a roughly flat (“white”) minimum in the band around 80 to 300 Hz.
We can “whiten” the data (dividing it by the noise amplitude spectrum, in the fourier domain), suppressing the extra noise at low frequencies and at the spectral lines, to better see the weak signals in the most sensitive band.
Whitening is always one of the first steps in astrophysical data analysis (searches, parameter estimation). Whitening requires no prior knowledge of spectral lines, etc; only the data are needed.
To get rid of remaining high frequency noise, we will also bandpass the data (this means we’ll remove the signal at all frequencies above some value).
The resulting time series is no longer in units of strain; now in units of “sigmas” away from the mean.
We will plot the whitened strain data, along with the signal template, after the matched filtering section, below.
# function to whiten data
def whiten(strain, interp_psd, dt):
Nt = len(strain)
freqs = np.fft.rfftfreq(Nt, dt)
freqs1 = np.linspace(0,2048.,Nt/2+1)
# whitening: transform to freq domain, divide by asd, then transform back,
# taking care to get normalization right.
hf = np.fft.rfft(strain)
norm = 1./np.sqrt(1./(dt*2))
white_hf = hf / np.sqrt(interp_psd(freqs)) * norm
white_ht = np.fft.irfft(white_hf, n=Nt)
return white_ht
whiten_data = 1
if whiten_data:
# now whiten the data from H1 and L1, and the template (use H1 PSD):
strain_H1_whiten = whiten(strain_H1,psd_H1,dt)
strain_L1_whiten = whiten(strain_L1,psd_L1,dt)
# We need to suppress the high frequency noise (no signal!) with some bandpassing:
bb, ab = butter(4, [fband[0]*2./fs, fband[1]*2./fs], btype='band')
normalization = np.sqrt((fband[1]-fband[0])/(fs/2))
strain_H1_whitenbp = filtfilt(bb, ab, strain_H1_whiten) / normalization
strain_L1_whitenbp = filtfilt(bb, ab, strain_L1_whiten) / normalization
/Users/aliceharpole/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:5: DeprecationWarning: object of type <class 'float'> cannot be safely interpreted as an integer.
"""
Now let’s plot a short time-frequency spectrogram around our event:
if make_plots:
# index into the strain time series for this time interval:
indxt = np.where((time >= tevent-deltat) & (time < tevent+deltat))
# pick a shorter FTT time interval, like 1/8 of a second:
NFFT = int(fs/8)
# and with a lot of overlap, to resolve short-time features:
NOVL = int(NFFT*15./16)
# and choose a window that minimizes "spectral leakage"
# (https://en.wikipedia.org/wiki/Spectral_leakage)
window = np.blackman(NFFT)
# the right colormap is all-important! See:
# http://matplotlib.org/examples/color/colormaps_reference.html
# viridis seems to be the best for our purposes, but it's new; if you don't have it, you can settle for ocean.
#spec_cmap='viridis'
spec_cmap='ocean'
# Plot the H1 spectrogram:
plt.figure(figsize=(10,6))
spec_H1, freqs, bins, im = plt.specgram(strain_H1[indxt], NFFT=NFFT, Fs=fs, window=window,
noverlap=NOVL, cmap=spec_cmap, xextent=[-deltat,deltat])
plt.xlabel('time (s) since '+str(tevent))
plt.ylabel('Frequency (Hz)')
plt.colorbar()
plt.axis([-deltat, deltat, 0, 2000])
plt.title('aLIGO H1 strain data near '+eventname)
plt.savefig(eventname+'_H1_spectrogram.'+plottype)
# Plot the L1 spectrogram:
plt.figure(figsize=(10,6))
spec_H1, freqs, bins, im = plt.specgram(strain_L1[indxt], NFFT=NFFT, Fs=fs, window=window,
noverlap=NOVL, cmap=spec_cmap, xextent=[-deltat,deltat])
plt.xlabel('time (s) since '+str(tevent))
plt.ylabel('Frequency (Hz)')
plt.colorbar()
plt.axis([-deltat, deltat, 0, 2000])
plt.title('aLIGO L1 strain data near '+eventname)
plt.savefig(eventname+'_L1_spectrogram.'+plottype)
In the above spectrograms, you may see lots of excess power below ~20 Hz, as well as strong spectral lines at 500, 1000, 1500 Hz (also evident in the ASDs above). The lines at multiples of 500 Hz are the harmonics of the “violin modes” of the fibers holding up the mirrors of the Advanced LIGO interferometers.
Now let’s zoom in on where we think the signal is, using the whitened data, in the hope of seeing a chirp:
if make_plots:
# plot the whitened data, zooming in on the signal region:
# pick a shorter FTT time interval, like 1/16 of a second:
NFFT = int(fs/16.0)
# and with a lot of overlap, to resolve short-time features:
NOVL = int(NFFT*15/16.0)
# choose a window that minimizes "spectral leakage"
# (https://en.wikipedia.org/wiki/Spectral_leakage)
window = np.blackman(NFFT)
# Plot the H1 whitened spectrogram around the signal
plt.figure(figsize=(10,6))
spec_H1, freqs, bins, im = plt.specgram(strain_H1_whiten[indxt], NFFT=NFFT, Fs=fs, window=window,
noverlap=NOVL, cmap=spec_cmap, xextent=[-deltat,deltat])
plt.xlabel('time (s) since '+str(tevent))
plt.ylabel('Frequency (Hz)')
plt.colorbar()
plt.axis([-0.5, 0.5, 0, 500])
plt.title('aLIGO H1 strain data near '+eventname)
plt.savefig(eventname+'_H1_spectrogram_whitened.'+plottype)
# Plot the L1 whitened spectrogram around the signal
plt.figure(figsize=(10,6))
spec_H1, freqs, bins, im = plt.specgram(strain_L1_whiten[indxt], NFFT=NFFT, Fs=fs, window=window,
noverlap=NOVL, cmap=spec_cmap, xextent=[-deltat,deltat])
plt.xlabel('time (s) since '+str(tevent))
plt.ylabel('Frequency (Hz)')
plt.colorbar()
plt.axis([-0.5, 0.5, 0, 500])
plt.title('aLIGO L1 strain data near '+eventname)
plt.savefig(eventname+'_L1_spectrogram_whitened.'+plottype)
Loud (high SNR) signals may be visible in these spectrograms. Compact object mergers show a characteristic “chirp” as the signal rises in frequency. If you can’t see anything, try
event GW150914, by changing the eventname
variable in the first cell above.
To do the next bit of analysis, we’re going to compare the data against a theoretical prediction of what we think it should look like. By doing some very complex simulations of black holes colliding, we can predict what the gravitational wave signal from such an event would look like. By carrying out a number of these simulations for a range of different black hole masses, we can then produce a library of waveform templates (where the waveform is the squiggly line indicating a gravitational wave signal that we’re looking for). By comparing the real signal to these templates and seeing which matches the best, we can then determine the properties of the system that produced the gravitational wave signal.
The results of a full LIGO-Virgo analysis of this BBH event include a set of parameters that are consistent with a range of parameterized waveform templates. Here we pick one for use in matched filtering (another type of sophisticated signal processing to remove noise).
# read in the template (plus and cross) and parameters for the theoretical waveform
try:
f_template = h5py.File(fn_template, "r")
except:
print("Cannot find template file!")
print("You can download it from https://losc.ligo.org/s/events/"+eventname+'/'+fn_template)
print("Quitting.")
quit()
# extract metadata from the template file:
template_p, template_c = f_template["template"][...]
t_m1 = f_template["/meta"].attrs['m1']
t_m2 = f_template["/meta"].attrs['m2']
t_a1 = f_template["/meta"].attrs['a1']
t_a2 = f_template["/meta"].attrs['a2']
t_approx = f_template["/meta"].attrs['approx']
f_template.close()
# the template extends to roughly 16s, zero-padded to the 32s data length. The merger will be roughly 16s in.
template_offset = 16.
# whiten the templates:
template_p_whiten = whiten(template_p,psd_H1,dt)
template_c_whiten = whiten(template_c,psd_H1,dt)
template_p_whitenbp = filtfilt(bb, ab, template_p_whiten) / normalization
template_c_whitenbp = filtfilt(bb, ab, template_c_whiten) / normalization
# Compute, print and plot some properties of the template:
# constants:
clight = 2.99792458e8 # m/s
G = 6.67259e-11 # m^3/kg/s^2
MSol = 1.989e30 # kg
# template parameters: masses in units of MSol:
t_mtot = t_m1+t_m2
# final BH mass is typically 95% of the total initial mass:
t_mfin = t_mtot*0.95
# Final BH radius, in km:
R_fin = 2*G*t_mfin*MSol/clight**2/1000.
# complex template:
template = (template_p + template_c*1.j)
ttime = time-time[0]-template_offset
# compute the instantaneous frequency of this chirp-like signal:
tphase = np.unwrap(np.angle(template))
fGW = np.gradient(tphase)*fs/(2.*np.pi)
# fix discontinuities at the very end:
# iffix = np.where(np.abs(np.gradient(fGW)) > 100.)[0]
iffix = np.where(np.abs(template) < np.abs(template).max()*0.001)[0]
fGW[iffix] = fGW[iffix[0]-1]
fGW[np.where(fGW < 1.)] = fGW[iffix[0]-1]
# compute v/c:
voverc = (G*t_mtot*MSol*np.pi*fGW/clight**3)**(1./3.)
# index where f_GW is in-band:
f_inband = fband[0]
iband = np.where(fGW > f_inband)[0][0]
# index at the peak of the waveform:
ipeak = np.argmax(np.abs(template))
# number of cycles between inband and peak:
Ncycles = (tphase[ipeak]-tphase[iband])/(2.*np.pi)
print('Properties of waveform template in {0}'.format(fn_template))
print("Waveform family = {0}".format(t_approx))
print("Masses = {0:.2f}, {1:.2f} Msun".format(t_m1,t_m2))
print('Mtot = {0:.2f} Msun, mfinal = {1:.2f} Msun '.format(t_mtot,t_mfin))
print("Spins = {0:.2f}, {1:.2f}".format(t_a1,t_a2))
print('Freq at inband, peak = {0:.2f}, {1:.2f} Hz'.format(fGW[iband],fGW[ipeak]))
print('Time at inband, peak = {0:.2f}, {1:.2f} s'.format(ttime[iband],ttime[ipeak]))
print('Duration (s) inband-peak = {0:.2f} s'.format(ttime[ipeak]-ttime[iband]))
print('N_cycles inband-peak = {0:.0f}'.format(Ncycles))
print('v/c at peak = {0:.2f}'.format(voverc[ipeak]))
print('Radius of final BH = {0:.0f} km'.format(R_fin))
if make_plots:
plt.figure(figsize=(10,16))
plt.subplot(4,1,1)
plt.plot(ttime,template_p)
plt.xlim([-template_offset,1.])
plt.grid()
plt.xlabel('time (s)')
plt.ylabel('strain')
plt.title(eventname+' template at D_eff = 1 Mpc')
plt.subplot(4,1,2)
plt.plot(ttime,template_p)
plt.xlim([-1.1,0.1])
plt.grid()
plt.xlabel('time (s)')
plt.ylabel('strain')
#plt.title(eventname+' template at D_eff = 1 Mpc')
plt.subplot(4,1,3)
plt.plot(ttime,fGW)
plt.xlim([-1.1,0.1])
plt.grid()
plt.xlabel('time (s)')
plt.ylabel('f_GW')
#plt.title(eventname+' template f_GW')
plt.subplot(4,1,4)
plt.plot(ttime,voverc)
plt.xlim([-1.1,0.1])
plt.grid()
plt.xlabel('time (s)')
plt.ylabel('v/c')
#plt.title(eventname+' template v/c')
plt.savefig(eventname+'_template.'+plottype)
/Users/aliceharpole/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:5: DeprecationWarning: object of type <class 'float'> cannot be safely interpreted as an integer.
"""
Properties of waveform template in GW150914_4_template.hdf5
Waveform family = b'lalsim.SEOBNRv2'
Masses = 41.74, 29.24 Msun
Mtot = 70.98 Msun, mfinal = 67.43 Msun
Spins = 0.35, -0.77
Freq at inband, peak = 43.05, 169.84 Hz
Time at inband, peak = -0.08, -0.02 s
Duration (s) inband-peak = 0.06 s
N_cycles inband-peak = 4
v/c at peak = 0.57
Radius of final BH = 199 km
These plots show the waveform template we’re going to use for our match filtering. As a function of time, they show the strain (and again the strain zoomed in to the actual event), the gravitational wave frequency and the relative velocity of the black holes divided by the speed of light.
Matched filtering is the optimal way to find a known signal buried in stationary, Gaussian noise. It is the standard technique used by the gravitational wave community to find GW signals from compact binary mergers in noisy detector data.
For some loud signals, it may be possible to see the signal in the whitened data or spectrograms. On the other hand, low signal-to-noise ratio (SNR) signals or signals which are of long duration in time may not be visible, even in the whitened data. LIGO scientists use matched filtering to find such “hidden” signals. A matched filter works by compressing the entire signal into one time bin (by convention, the “end time” of the waveform).
LIGO uses a rather elaborate software suite to match the data against a family of such signal waveforms (“templates”), to find the best match. This procedure helps to “optimally” separate signals from instrumental noise, and to infer the parameters of the source (masses, spins, sky location, orbit orientation, etc) from the best match templates.
A blind search requires us to search over many compact binary merger templates (e.g. 250,000) with different masses and spins, as well as over all times in all detectors, and then requiring triggers coincident in time and template between detectors. It’s an extremely complex and computationally-intensive “search pipeline”.
Here, we simplify things, using only one template (the one identified in the full search as being a good match to the data).
Assuming that the data around this event is fairly Gaussian and stationary, we’ll use this simple method to identify the signal (matching the template) in our 32 second stretch of data. The peak in the SNR vs time is a “single-detector event trigger”.
# -- To calculate the PSD of the data, choose an overlap and a window (common to all detectors)
# that minimizes "spectral leakage" https://en.wikipedia.org/wiki/Spectral_leakage
NFFT = 4*fs
psd_window = np.blackman(NFFT)
# and a 50% overlap:
NOVL = NFFT/2
# define the complex template, common to both detectors:
template = (template_p + template_c*1.j)
# We will record the time where the data match the END of the template.
etime = time+template_offset
# the length and sampling rate of the template MUST match that of the data.
datafreq = np.fft.fftfreq(template.size)*fs
df = np.abs(datafreq[1] - datafreq[0])
# to remove effects at the beginning and end of the data stretch, window the data
# https://en.wikipedia.org/wiki/Window_function#Tukey_window
try: dwindow = signal.tukey(template.size, alpha=1./8) # Tukey window preferred, but requires recent scipy version
except: dwindow = signal.blackman(template.size) # Blackman window OK if Tukey is not available
# prepare the template fft.
template_fft = np.fft.fft(template*dwindow) / fs
# loop over the detectors
dets = ['H1', 'L1']
for det in dets:
if det is 'L1': data = strain_L1.copy()
else: data = strain_H1.copy()
# -- Calculate the PSD of the data. Also use an overlap, and window:
data_psd, freqs = mlab.psd(data, Fs = fs, NFFT = NFFT, window=psd_window, noverlap=NOVL)
# Take the Fourier Transform (FFT) of the data and the template (with dwindow)
data_fft = np.fft.fft(data*dwindow) / fs
# -- Interpolate to get the PSD values at the needed frequencies
power_vec = np.interp(np.abs(datafreq), freqs, data_psd)
# -- Calculate the matched filter output in the time domain:
# Multiply the Fourier Space template and data, and divide by the noise power in each frequency bin.
# Taking the Inverse Fourier Transform (IFFT) of the filter output puts it back in the time domain,
# so the result will be plotted as a function of time off-set between the template and the data:
optimal = data_fft * template_fft.conjugate() / power_vec
optimal_time = 2*np.fft.ifft(optimal)*fs
# -- Normalize the matched filter output:
# Normalize the matched filter output so that we expect a value of 1 at times of just noise.
# Then, the peak of the matched filter output will tell us the signal-to-noise ratio (SNR) of the signal.
sigmasq = 1*(template_fft * template_fft.conjugate() / power_vec).sum() * df
sigma = np.sqrt(np.abs(sigmasq))
SNR_complex = optimal_time/sigma
# shift the SNR vector by the template length so that the peak is at the END of the template
peaksample = int(data.size / 2) # location of peak in the template
SNR_complex = np.roll(SNR_complex,peaksample)
SNR = abs(SNR_complex)
# find the time and SNR value at maximum:
indmax = np.argmax(SNR)
timemax = time[indmax]
SNRmax = SNR[indmax]
# Calculate the "effective distance" (see FINDCHIRP paper for definition)
# d_eff = (8. / SNRmax)*D_thresh
d_eff = sigma / SNRmax
# -- Calculate optimal horizon distnace
horizon = sigma/8
# Extract time offset and phase at peak
phase = np.angle(SNR_complex[indmax])
offset = (indmax-peaksample)
# apply time offset, phase, and d_eff to template
template_phaseshifted = np.real(template*np.exp(1j*phase)) # phase shift the template
template_rolled = np.roll(template_phaseshifted,offset) / d_eff # Apply time offset and scale amplitude
# Whiten and band-pass the template for plotting
template_whitened = whiten(template_rolled,interp1d(freqs, data_psd),dt) # whiten the template
template_match = filtfilt(bb, ab, template_whitened) / normalization # Band-pass the template
print('For detector {0}, maximum at {1:.4f} with SNR = {2:.1f}, D_eff = {3:.2f}, horizon = {4:0.1f} Mpc'
.format(det,timemax,SNRmax,d_eff,horizon))
if make_plots:
# plotting changes for the detectors:
if det is 'L1':
pcolor='g'
strain_whitenbp = strain_L1_whitenbp
template_L1 = template_match.copy()
else:
pcolor='r'
strain_whitenbp = strain_H1_whitenbp
template_H1 = template_match.copy()
# -- Plot the result
plt.figure(figsize=(10,8))
plt.subplot(2,1,1)
plt.plot(time-timemax, SNR, pcolor,label=det+' SNR(t)')
#plt.ylim([0,25.])
plt.grid('on')
plt.ylabel('SNR')
plt.xlabel('Time since {0:.4f}'.format(timemax))
plt.legend(loc='upper left')
plt.title(det+' matched filter SNR around event')
# zoom in
plt.subplot(2,1,2)
plt.plot(time-timemax, SNR, pcolor,label=det+' SNR(t)')
plt.grid('on')
plt.ylabel('SNR')
plt.xlim([-0.15,0.05])
#plt.xlim([-0.3,+0.3])
plt.grid('on')
plt.xlabel('Time since {0:.4f}'.format(timemax))
plt.legend(loc='upper left')
plt.savefig(eventname+"_"+det+"_SNR."+plottype)
plt.figure(figsize=(10,8))
plt.subplot(2,1,1)
plt.plot(time-tevent,strain_whitenbp,pcolor,label=det+' whitened h(t)')
plt.plot(time-tevent,template_match,'k',label='Template(t)')
plt.ylim([-10,10])
plt.xlim([-0.15,0.05])
plt.grid('on')
plt.xlabel('Time since {0:.4f}'.format(timemax))
plt.ylabel('whitened strain (units of noise stdev)')
plt.legend(loc='upper left')
plt.title(det+' whitened data around event')
plt.subplot(2,1,2)
plt.plot(time-tevent,strain_whitenbp-template_match,pcolor,label=det+' resid')
plt.ylim([-10,10])
plt.xlim([-0.15,0.05])
plt.grid('on')
plt.xlabel('Time since {0:.4f}'.format(timemax))
plt.ylabel('whitened strain (units of noise stdev)')
plt.legend(loc='upper left')
plt.title(det+' Residual whitened data after subtracting template around event')
plt.savefig(eventname+"_"+det+"_matchtime."+plottype)
# -- Display PSD and template
# must multiply by sqrt(f) to plot template fft on top of ASD:
plt.figure(figsize=(10,6))
template_f = np.absolute(template_fft)*np.sqrt(np.abs(datafreq)) / d_eff
plt.loglog(datafreq, template_f, 'k', label='template(f)*sqrt(f)')
plt.loglog(freqs, np.sqrt(data_psd),pcolor, label=det+' ASD')
plt.xlim(20, fs/2)
plt.ylim(1e-24, 1e-20)
plt.grid()
plt.xlabel('frequency (Hz)')
plt.ylabel('strain noise ASD (strain/rtHz), template h(f)*rt(f)')
plt.legend(loc='upper left')
plt.title(det+' ASD and template around event')
plt.savefig(eventname+"_"+det+"_matchfreq."+plottype)
/Users/aliceharpole/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:5: DeprecationWarning: object of type <class 'float'> cannot be safely interpreted as an integer.
"""
For detector H1, maximum at 1126259462.4395 with SNR = 18.6, D_eff = 814.44, horizon = 1889.6 Mpc
For detector L1, maximum at 1126259462.4324 with SNR = 13.2, D_eff = 999.74, horizon = 1650.6 Mpc
Let’s turn our data into sound! Here, we’re going to make wav (sound) files from the filtered, downsampled data, +-2s around the event.
# make wav (sound) files from the whitened data, +-2s around the event.
from scipy.io import wavfile
# function to keep the data within integer limits, and write to wavfile:
def write_wavfile(filename,fs,data):
d = np.int16(data/np.max(np.abs(data)) * 32767 * 0.9)
wavfile.write(filename,int(fs), d)
deltat_sound = 2. # seconds around the event
# index into the strain time series for this time interval:
indxd = np.where((time >= tevent-deltat_sound) & (time < tevent+deltat_sound))
# write the files:
write_wavfile(eventname+"_H1_whitenbp.wav",int(fs), strain_H1_whitenbp[indxd])
write_wavfile(eventname+"_L1_whitenbp.wav",int(fs), strain_L1_whitenbp[indxd])
# re-whiten the template using the smoothed PSD; it sounds better!
template_p_smooth = whiten(template_p,psd_smooth,dt)
# and the template, zooming in on [-3,+1] seconds around the merger:
indxt = np.where((time >= (time[0]+template_offset-deltat_sound)) & (time < (time[0]+template_offset+deltat_sound)))
write_wavfile(eventname+"_template_whiten.wav",int(fs), template_p_smooth[indxt])
/Users/aliceharpole/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:5: DeprecationWarning: object of type <class 'float'> cannot be safely interpreted as an integer.
"""
With good headphones, you may be able to hear a faint thump in the middle; that’s our signal!
from IPython.display import Audio
fna = eventname+"_template_whiten.wav"
print(fna)
Audio(fna)
GW150914_template_whiten.wav
<audio controls="controls" >
<source src="data:audio/x-wav;base64,UklGRiSAAABXQVZFZm10IBAAAAABAAEAABAAAAAgAAACABAAZGF0YQCAAAAJ/wb/A/8A//7++/75/vb+9P7y/vD+7v7s/uv+6f7o/ub+5f7k/uP+4v7i/uH+4f7g/uD+4P7g/uD+4f7h/uH+4v7j/uT+5f7m/uf+6P7q/uv+7f7v/vH+8/71/vf++v78/v/+Av8F/wf/C/8O/xH/FP8Y/xv/H/8j/yf/Kv8u/zP/N/87/z//RP9I/03/Uv9X/1v/YP9l/2r/b/91/3r/f/+E/4r/j/+V/5r/oP+m/6v/sf+3/73/wv/I/87/1P/a/+D/5v/s//L/+P/+/wMACQAPABUAGgAgACYALAAyADgAPgBEAEoATwBVAFsAYQBmAGwAcQB3AHwAggCHAI0AkgCXAJwAoQCmAKsAsAC1ALkAvgDDAMcAywDQANQA2ADcAOAA5ADoAOsA7wDyAPYA+QD8AP8AAgEFAQcBCgEMAQ8BEQETARUBFwEZARsBHAEeAR8BIAEhASIBIwEjASQBJAElASUBJQElASUBJAEkASMBIwEiASEBIAEfAR4BHAEbARkBFwEVARMBEQEPAQwBCgEHAQUBAgH/APwA+QD1APIA7gDrAOcA4wDfANsA1wDTAM8AywDGAMIAvQC4ALQArwCqAKUAoACbAJUAkACLAIUAgAB6AHUAbwBqAGQAXgBYAFIATABHAEEAOwA1AC8AKQAiABwAFgAQAAoABAD///n/8//s/+b/4P/a/9T/zv/I/8L/vP+2/7D/qv+k/57/mf+T/43/h/+C/3z/d/9x/2z/Z/9h/1z/V/9S/03/SP9D/z//Ov81/zH/Lf8o/yT/IP8c/xj/FP8Q/w3/Cf8G/wL///78/vn+9v70/vH+7v7s/ur+6P7l/uT+4v7g/t7+3f7c/tv+2v7Z/tj+1/7X/tb+1v7W/tb+1v7W/tb+1/7X/tj+2f7a/tv+3P7e/t/+4f7j/uX+5/7p/uv+7f7w/vL+9f74/vv+/v4B/wT/CP8L/w//E/8X/xr/H/8j/yf/K/8w/zT/Of89/0L/R/9M/1H/Vv9b/2H/Zv9r/3H/dv98/4H/h/+N/5P/mP+e/6T/qv+w/7b/vP/D/8n/z//V/9v/4v/o/+7/9P/7/wAABgAMABMAGQAfACYALAAyADgAPgBEAEsAUQBXAF0AYwBpAG8AdAB6AIAAhgCLAJEAlgCcAKEApwCsALEAtgC7AMAAxQDKAM4A0wDYANwA4ADkAOkA7QDxAPQA+AD8AP8AAwEGAQkBDAEPARIBFAEXARkBHAEeASABIgEkASYBJwEpASoBKwEsAS0BLgEuAS8BLwEwATABMAEwAS8BLwEuAS4BLQEsASsBKgEoAScBJQEkASIBIAEeARsBGQEXARQBEQEOAQsBCAEFAQIB/gD7APcA8wDwAOwA6ADjAN8A2wDWANIAzQDIAMMAvgC5ALQArwCqAKQAnwCZAJQAjgCJAIMAfQB3AHEAawBlAF8AWQBTAE0ARgBAADoANAAtACcAIAAaABQADQAHAAAA+//0/+7/6P/h/9v/1P/O/8j/wf+7/7X/rv+o/6L/nP+W/5D/iv+E/37/eP9y/2z/Z/9h/1z/Vv9R/0z/Rv9B/zz/N/8y/y3/Kf8k/yD/G/8X/xP/D/8L/wf/A////vz++P71/vL+7/7s/un+5v7j/uH+3v7c/tr+2P7W/tX+0/7S/tD+z/7O/s3+zP7M/sv+y/7L/sv+y/7L/sv+zP7M/s3+zv7P/tD+0f7T/tT+1v7Y/tr+3P7e/uD+4/7m/uj+6/7u/vH+9P74/vv+//4C/wb/Cv8O/xL/F/8b/x//JP8p/y3/Mv83/zz/Qf9H/0z/Uf9X/1z/Yv9o/23/c/95/3//hf+L/5H/l/+e/6T/qv+w/7f/vf/E/8r/0f/X/97/5P/r//L/+P///wQACwASABgAHwAlACwAMgA5AD8ARgBMAFMAWQBgAGYAbAByAHgAfwCFAIsAkQCWAJwAogCoAK0AswC4AL0AwwDIAM0A0gDXANwA4QDlAOoA7gDyAPcA+wD/AAMBBgEKAQ0BEQEUARcBGgEdASABIwElASgBKgEsAS4BMAExATMBNAE2ATcBOAE5AToBOgE7ATsBOwE7ATsBOwE6AToBOQE4ATcBNgE1ATQBMgEwAS8BLQErASgBJgEkASEBHgEbARgBFQESAQ8BCwEIAQQBAAH8APgA9ADvAOsA5gDiAN0A2ADTAM4AyQDEAL8AuQC0AK4AqACjAJ0AlwCRAIsAhQB/AHkAcgBsAGYAXwBZAFIATABFAD8AOAAxACsAJAAdABYAEAAJAAIA/P/1/+//6P/h/9r/1P/N/8b/wP+5/7L/rP+l/5//mP+S/4v/hf9//3n/cv9s/2b/YP9b/1X/T/9J/0T/Pv85/zT/Lv8p/yT/H/8a/xb/Ef8N/wj/BP8A//z++P70/vD+7f7p/ub+4/7g/t3+2v7X/tX+0v7Q/s7+zP7K/sj+x/7F/sT+w/7C/sH+wP7A/r/+v/6//r/+v/6//sD+wf7B/sL+w/7E/sb+x/7J/sv+zf7P/tH+0/7W/tj+2/7e/uH+5P7n/uv+7v7y/vb++v7+/gL/Bv8L/w//FP8Y/x3/Iv8n/yz/Mv83/zz/Qv9I/03/U/9Z/1//Zf9r/3H/d/9+/4T/iv+R/5f/nv+l/6v/sv+5/8D/xv/N/9T/2//i/+n/8P/3//7/BAALABEAGAAfACYALQA0ADsAQgBJAE8AVgBdAGQAagBxAHcAfgCEAIsAkQCXAJ0AowCpAK8AtQC7AMEAxgDMANEA1wDcAOEA5gDrAPAA9QD5AP4AAgEGAQoBDgESARYBGgEdASEBJAEnASoBLQEwATIBNQE3ATkBOwE9AT4BQAFBAUMBRAFFAUYBRgFHAUcBRwFHAUcBRwFHAUYBRQFEAUMBQgFBAT8BPgE8AToBOAE2ATQBMQEuASwBKQEmASMBHwEcARgBFAERAQ0BCQEEAQAB/AD3APIA7QDoAOMA3gDZANQAzgDJAMMAvQC3ALEAqwClAJ8AmQCTAIwAhgB/AHkAcgBrAGUAXgBXAFAASQBCADsANAAtACYAHwAYABEACgACAPz/9f/u/+f/4P/Z/9L/yv/D/7z/tf+u/6f/of+a/5P/jP+F/3//eP9y/2v/Zf9f/1j/Uv9M/0b/QP86/zT/L/8p/yT/Hv8Z/xT/D/8K/wX/Af/8/vj+8/7v/uv+5/7j/t/+3P7Y/tX+0v7P/sz+yf7H/sT+wv7A/r7+vP67/rn+uP63/rX+tf60/rP+s/6y/rL+sv6z/rP+s/60/rX+tv63/rj+uv67/r3+v/7B/sP+xv7I/sv+zf7Q/tT+1/7a/t7+4f7l/un+7f7x/vb++v7//gP/CP8N/xL/F/8c/yL/J/8t/zP/OP8+/0T/Sv9Q/1f/Xf9j/2r/cP93/37/hP+L/5L/mf+g/6f/rv+1/7z/xP/L/9L/2f/h/+j/7//3//7/BAAMABMAGgAiACkAMAA3AD8ARgBNAFQAWwBiAGkAcAB3AH4AhQCMAJMAmQCgAKYArQCzALkAvwDFAMsA0QDXAN0A4gDoAO0A8gD3APwAAQEGAQsBDwEUARgBHAEgASQBKAErAS8BMgE1ATgBOwE+AUABQwFFAUcBSQFLAU0BTgFPAVEBUgFSAVMBVAFUAVQBVAFUAVQBUwFTAVIBUQFQAU8BTQFMAUoBSAFGAUQBQQE/ATwBOQE2ATMBMAEsASkBJQEhAR0BGQEVAREBDAEHAQMB/gD5APMA7gDpAOMA3gDYANIAzADGAMAAugCzAK0ApwCgAJkAkwCMAIUAfgB3AHAAaQBiAFoAUwBMAEQAPQA2AC4AJwAfABgAEAAJAAEA+//z/+z/5P/c/9X/zf/G/7//t/+w/6j/of+a/5P/jP+E/33/dv9v/2n/Yv9b/1T/Tv9H/0H/O/81/y//Kf8j/x3/F/8S/wz/B/8C//z+9/7z/u7+6f7l/uD+3P7Y/tT+0f7N/sn+xv7D/sD+vf66/rj+tf6z/rH+r/6t/qz+qv6p/qj+p/6m/qb+pf6l/qX+pf6l/qb+pv6n/qj+qf6q/qz+rf6v/rH+s/61/rj+uv69/sD+w/7G/sn+zf7R/tT+2P7c/uH+5f7q/u7+8/74/v3+Av8H/w3/Ev8Y/x7/JP8q/zD/Nv88/0P/Sf9Q/1b/Xf9k/2v/cv95/4D/h/+P/5b/nf+l/6z/tP+7/8P/yv/S/9r/4v/p//H/+f8AAAcADwAXAB4AJgAuADYAPQBFAEwAVABcAGMAagByAHkAgQCIAI8AlgCdAKQAqwCyALgAvwDFAMwA0gDYAN8A5QDqAPAA9gD7AAEBBgELARABFQEaAR8BIwEoASwBMAE0ATgBOwE/AUIBRQFIAUsBTgFQAVMBVQFXAVkBWwFcAV0BXwFgAWABYQFiAWIBYgFiAWIBYQFhAWABXwFeAV0BWwFaAVgBVgFUAVIBTwFNAUoBRwFEAUEBPQE6ATYBMgEuASoBJQEhARwBGAETAQ4BCAEDAf4A+ADyAO0A5wDhANoA1ADOAMcAwQC6ALMArAClAJ4AlwCQAIkAgQB6AHIAawBjAFwAVABMAEQAPQA1AC0AJQAdABUADQAFAP7/9v/u/+b/3v/W/8//x/+//7f/r/+n/6D/mP+Q/4n/gf96/3L/a/9k/13/Vf9O/0j/Qf86/zP/Lf8m/yD/Gv8U/w7/CP8C//z+9/7x/uz+5/7i/t3+2P7U/s/+y/7H/sP+v/68/rj+tf6y/q/+rP6p/qf+pf6i/qH+n/6d/pz+mv6Z/pn+mP6X/pf+l/6X/pf+l/6Y/pn+mf6b/pz+nf6f/qH+o/6l/qf+qv6s/q/+sv61/rn+vP7A/sT+yP7M/tD+1f7Z/t7+4/7o/u3+8/74/v7+A/8J/w//Ff8c/yL/Kf8v/zb/Pf9E/0r/Uv9Z/2D/Z/9v/3b/fv+G/43/lf+d/6X/rf+1/73/xf/N/9X/3f/l/+3/9f/+/wUADQAVAB0AJgAuADYAPgBGAE4AVgBeAGYAbgB2AH4AhQCNAJQAnACjAKsAsgC5AMAAxwDOANUA3ADiAOkA7wD1APsAAQEHAQ0BEwEYAR0BIgEnASwBMQE2AToBPgFCAUYBSgFOAVEBVAFYAVoBXQFgAWIBZAFmAWgBagFsAW0BbgFvAXABcAFxAXEBcQFxAXABcAFvAW4BbQFsAWoBaAFnAWUBYgFgAV0BWwFYAVUBUQFOAUoBRgFCAT4BOgE2ATEBLAEnASIBHQEYARIBDAEHAQEB+wD0AO4A6ADhANoA1ADNAMYAvgC3ALAAqQChAJkAkgCKAIIAegByAGoAYgBaAFIASgBCADkAMQApACAAGAAPAAcA///3/+//5v/e/9X/zf/F/7z/tP+s/6T/m/+T/4v/g/97/3P/a/9k/1z/VP9N/0X/Pv83/zD/Kf8i/xv/FP8O/wf/Af/7/vX+7/7p/uP+3v7Z/tP+zv7J/sX+wP68/rf+s/6v/qz+qP6l/qL+n/6c/pn+l/6U/pL+kP6O/o3+jP6K/on+if6I/oj+h/6H/oj+iP6J/on+iv6L/o3+jv6Q/pL+lP6W/pn+nP6e/qL+pf6o/qz+r/6z/rj+vP7A/sX+yv7P/tT+2f7e/uT+6v7w/vb+/P4C/wj/D/8W/xz/I/8q/zL/Of9A/0j/T/9X/1//Z/9u/3b/f/+H/4//l/+g/6j/sP+5/8H/yv/T/9v/5P/s//X//v8FAA4AFwAfACgAMQA5AEIASwBTAFwAZABsAHUAfQCFAI0AlQCdAKUArQC1AL0AxADMANMA2gDhAOgA7wD2AP0AAwEKARABFgEcASIBKAEtATIBOAE9AUIBRgFLAU8BUwFYAVsBXwFjAWYBaQFsAW8BcQF0AXYBeAF6AXsBfQF+AX8BfwGAAYABgQGBAYABgAF/AX8BfQF8AXsBeQF3AXUBcwFxAW4BawFoAWUBYgFeAVsBVwFSAU4BSgFFAUABOwE2ATEBKwEmASABGgEUAQ4BBwEBAfoA8wDsAOUA3gDXAM8AyADAALgAsQCpAKEAmACQAIgAgAB3AG8AZgBeAFUATABDADsAMgApACAAFwAOAAUA/f/0/+v/4v/a/9H/yP+//7b/rf+l/5z/k/+L/4L/ev9x/2n/Yf9Y/1D/SP9A/zn/Mf8p/yL/G/8T/wz/Bf/+/vj+8f7q/uT+3v7Y/tL+zP7H/sL+vP63/rL+rv6p/qX+of6d/pn+lf6S/o/+jP6J/ob+hP6C/oD+fv58/nv+ev55/nj+eP53/nf+d/53/nj+ef55/nv+fP59/n/+gf6D/ob+iP6L/o7+kf6U/pj+nP6g/qT+qP6s/rH+tv67/sD+xv7L/tH+1/7d/uP+6f7w/vf+/f4E/wv/E/8a/yH/Kf8x/zn/QP9J/1H/Wf9h/2r/cv97/4P/jP+V/57/p/+w/7n/wv/L/9T/3f/m/+//+f8BAAoAEwAcACYALwA4AEEASgBTAFwAZQBuAHcAgACJAJEAmgCiAKsAswC7AMQAzADTANsA4wDrAPIA+QABAQgBDwEVARwBIwEpAS8BNQE7AUEBRgFMAVEBVgFaAV8BZAFoAWwBcAFzAXcBegF9AYABgwGFAYcBiQGLAY0BjgGPAZABkQGRAZIBkgGSAZEBkQGQAY8BjgGMAYoBiQGGAYQBggF/AXwBeQF2AXIBbgFqAWYBYgFdAVgBVAFOAUkBRAE+ATgBMgEsASYBHwEZARIBCwEEAfwA9QDuAOYA3gDWAM4AxgC+ALUArQCkAJwAkwCKAIEAeABvAGYAXQBUAEoAQQA4AC4AJQAbABIACAAAAPb/7f/j/9r/0f/H/77/tP+r/6L/mP+P/4b/ff90/2v/Yv9a/1H/SP9A/zf/L/8n/x//F/8P/wf/AP/4/vH+6v7j/tz+1v7P/sn+w/69/rf+sf6s/qb+of6c/pj+k/6P/ov+h/6D/oD+fP55/nb+dP5x/m/+bf5r/mr+af5n/mf+Zv5m/mX+Zf5m/mb+Z/5o/mn+av5s/m7+cP5y/nX+d/56/n3+gf6E/oj+jP6Q/pX+mf6e/qP+qP6u/rP+uf6//sX+y/7S/tn+3/7m/u7+9f78/gT/DP8T/xv/JP8s/zT/Pf9F/07/V/9g/2n/cv97/4T/jv+X/6H/qv+0/73/x//R/9r/5P/u//j/AAAKABQAHgAoADEAOwBFAE4AWABiAGsAdQB+AIcAkQCaAKMArAC1AL4AxgDPANgA4ADoAPAA+AAAAQgBEAEXAR4BJgEtATMBOgFBAUcBTQFTAVkBXgFkAWkBbgFyAXcBewGAAYMBhwGLAY4BkQGUAZYBmQGbAZ0BnwGgAaEBogGjAaQBpAGkAaQBowGjAaIBoQGfAZ4BnAGaAZgBlQGSAZABjAGJAYUBgQF9AXkBdQFwAWsBZgFhAVsBVQFPAUkBQwE8ATYBLwEoASEBGQESAQoBAgH6APIA6gDiANkA0QDIAL8AtgCtAKQAmgCRAIcAfgB0AGsAYQBXAE0AQwA5AC8AJQAbABEABwD+//T/6v/g/9X/y//B/7f/rf+k/5r/kP+G/3z/c/9p/2D/Vv9N/0T/O/8y/yn/IP8Y/w//B////vb+7/7n/t/+2P7Q/sn+wv68/rX+r/6o/qL+nP6X/pH+jP6H/oL+fv55/nX+cf5u/mr+Z/5k/mH+X/5c/lr+WP5X/lX+VP5T/lP+Uv5S/lL+U/5T/lT+Vf5X/lj+Wv5c/l7+Yf5k/mf+av5u/nH+df55/n7+gv6H/oz+kv6X/p3+o/6p/q/+tv68/sP+yv7R/tn+4P7o/vD++P4A/wn/Ef8a/yP/LP81/z7/R/9R/1r/ZP9u/3f/gf+L/5X/n/+p/7T/vv/I/9P/3f/n//L//P8GABAAGgAlAC8AOgBEAE4AWABjAG0AdwCBAIsAlQCfAKgAsgC8AMUAzgDYAOEA6gDyAPsABAEMARQBHAEkASwBNAE7AUIBSgFQAVcBXgFkAWoBcAF1AXsBgAGFAYoBjwGTAZcBmwGfAaIBpQGoAasBrQGvAbEBswG0AbYBtgG3AbgBuAG4AbcBtwG2AbUBswGyAbABrgGrAakBpgGjAZ8BnAGYAZQBkAGLAYYBgQF8AXYBcQFrAWUBXgFYAVEBSgFDATwBNAEtASUBHQEUAQwBBAH7APIA6QDgANcAzQDEALoAsACmAJwAkgCIAH4AdABpAF8AVABKAD8ANQAqAB8AFAAKAAAA9f/q/+D/1f/K/8D/tf+q/6D/lf+L/4D/dv9s/2H/V/9N/0T/Ov8w/yf/Hf8U/wv/Av/5/vD+5/7f/tf+z/7H/r/+uP6w/qn+ov6b/pX+j/6I/oP+ff53/nL+bf5o/mT+YP5c/lj+VP5R/k7+S/5J/kb+RP5D/kH+QP4//j7+Pv4+/j7+Pv4//kD+Qf5C/kT+Rv5I/kv+Tv5R/lT+V/5b/l/+Y/5o/m3+cv53/nz+gv6I/o7+lf6b/qL+qf6w/rj+v/7H/s/+1/7g/uj+8f76/gP/DP8V/x//Kf8y/zz/Rv9Q/1v/Zf9v/3r/hP+P/5r/pf+w/7v/xv/R/9z/5//y//3/BwASAB0AKAA0AD8ASgBVAGAAagB1AIAAiwCVAKAAqgC1AL8AyQDTAN0A5wDwAPoAAwEMARUBHgEnATABOAFAAUgBUAFXAV8BZgFtAXQBegGBAYcBjQGSAZgBnQGiAaYBqwGvAbMBtgG6Ab0BwAHCAcUBxwHIAcoBywHMAc0BzQHNAc0BzQHMAcsBygHIAcYBxAHCAb8BvAG5AbUBsgGuAakBpQGgAZsBlgGQAYsBhQF+AXgBcQFqAWMBXAFUAU0BRQE8ATQBKwEjARoBEQEHAf4A9ADrAOEA1wDMAMIAuACtAKIAmACNAIIAdwBsAGEAVQBKAD8AMwAoABwAEQAGAPv/7//k/9n/zf/C/7b/q/+f/5T/if9+/3P/aP9d/1L/R/89/zL/KP8e/xT/Cv8A//b+7f7j/tr+0f7I/sD+t/6v/qf+n/6Y/pD+if6C/nv+df5v/mn+Y/5d/lj+U/5O/kr+Rf5C/j7+Ov43/jT+Mv4w/i7+LP4q/in+KP4o/ij+KP4o/ij+Kf4q/iz+Lv4w/jL+NP43/jv+Pv5C/kb+Sv5O/lP+WP5e/mP+af5v/nb+fP6D/or+kf6Z/qH+qf6x/rn+wv7L/tT+3f7m/vD++f4D/w3/GP8i/yz/N/9C/03/WP9j/27/ef+F/5D/nP+n/7P/v//L/9b/4v/u//r/BQARAB0AKQA0AEAATABYAGMAbwB7AIYAkgCdAKgAswC/AMkA1ADfAOoA9AD+AAgBEgEcASYBLwE5AUIBSgFTAVwBZAFsAXQBewGDAYoBkQGXAZ4BpAGqAa8BtQG6Ab8BwwHHAcsBzwHSAdYB2AHbAd0B3wHhAeIB4wHkAeQB5AHkAeQB4wHiAeAB3wHdAdsB2AHVAdIBzgHLAccBwgG+AbkBtAGuAakBowGcAZYBjwGIAYEBeQFxAWkBYQFZAVABRwE+ATUBKwEiARgBDgEEAfkA7wDkANkAzgDDALgArAChAJUAiQB+AHIAZgBaAE4AQgA1ACkAHQARAAQA+f/t/+D/1P/I/7z/r/+j/5f/i/9//3P/Z/9c/1D/RP85/y7/I/8Y/w3/Av/3/u3+4/7Z/s/+xf67/rL+qf6g/pj+j/6H/n/+d/5w/mj+Yf5b/lT+Tv5I/kL+Pf44/jP+L/4q/if+I/4g/h3+Gv4X/hX+FP4S/hH+EP4Q/g/+D/4Q/hH+Ev4T/hX+F/4Z/hz+H/4i/iX+Kf4t/jL+Nv48/kH+Rv5M/lP+Wf5g/mf+bv52/n3+hf6O/pb+n/6o/rH+u/7E/s7+2P7i/u3+9/4C/w3/GP8j/y//Ov9G/1L/Xv9q/3b/gv+P/5v/p/+0/8H/zf/a/+f/8/8AAAwAGQAlADIAPwBLAFgAZQBxAH4AigCWAKIArwC7AMYA0gDeAOkA9QAAAQsBFgEgASsBNQE/AUkBUwFdAWYBbwF4AYABiQGRAZkBoAGnAa8BtQG8AcIByAHOAdMB2AHdAeEB5QHpAewB8AHyAfUB9wH5AfsB/AH9Af0B/gH9Af0B/AH7AfoB+AH2AfQB8QHuAeoB5wHjAd4B2gHVAdABygHEAb4BuAGxAaoBowGbAZMBiwGDAXoBcQFoAV8BVQFLAUEBNwEsASIBFwEMAQEB9QDqAN4A0gDGALoArQChAJQAiAB7AG4AYQBUAEcAOgAtACAAEwAGAPn/7P/f/9L/xf+4/6r/nf+Q/4P/d/9q/13/Uf9E/zj/LP8g/xT/CP/8/vH+5f7a/s/+xf66/rD+pv6c/pL+if5//nf+bv5l/l3+Vf5O/kb+P/45/jL+LP4m/iH+HP4X/hL+Dv4K/gb+A/4A/v79+/35/fj99/32/fX99f31/fb99v34/fn9+/39/QD+A/4G/gr+Df4S/hb+G/4g/ib+LP4y/jn+P/5G/k7+Vf5d/mb+bv53/oD+if6T/p3+p/6x/rz+x/7S/t3+6P70/v/+C/8X/yT/MP89/0n/Vv9j/3D/ff+L/5j/pf+z/8D/zv/c/+n/9/8EABEAHwAtADoASABWAGMAcQB+AIsAmQCmALMAwADNANkA5gDyAP4ACwEWASIBLgE5AUQBTwFaAWQBbwF5AYIBjAGVAZ4BpwGvAbcBvwHHAc4B1QHbAeIB6AHtAfMB+AH8AQECBQIIAgwCDgIRAhMCFQIXAhgCGQIZAhkCGQIYAhcCFgIUAhICDwINAgkCBgICAv4B+QH0Ae8B6QHjAd0B1wHQAcgBwQG5AbEBqAGgAZcBjQGEAXoBcAFlAVsBUAFFATkBLgEiARYBCgH+APEA5ADYAMsAvQCwAKMAlQCIAHoAbABeAFAAQgA0ACYAGAAJAPz/7v/g/9L/w/+1/6f/mf+L/33/b/9i/1T/Rv85/yz/H/8S/wX/+P7s/t/+0/7H/rz+sP6l/pr+j/6E/nr+cP5m/l3+VP5L/kL+Ov4y/ir+I/4c/hX+Dv4I/gP+/f34/fT97/3r/ej95P3i/d/93f3b/dr92f3Y/dj92P3Z/dr92/3d/d/94f3k/ef96/3v/fP9+P39/QL+CP4O/hT+G/4i/ir+Mv46/kL+S/5U/l3+Z/5x/nv+hv6Q/pv+p/6y/r7+yv7W/uL+7/78/gn/Fv8j/zH/P/9M/1r/aP93/4X/k/+i/7D/v//O/9z/6//6/wcAFgAlADQAQgBRAGAAbgB9AIsAmgCoALYAxADSAN8A7QD6AAgBFQEiAS4BOwFHAVMBXwFrAXYBgQGMAZYBoQGrAbQBvgHHAdAB2AHgAegB8AH3Af0BBAIKAhACFQIaAh4CIwImAioCLQIwAjICNAI1AjYCNwI3AjcCNwI2AjQCMwIxAi4CKwIoAiQCIAIcAhcCEgIMAgYCAAL5AfIB6wHjAdsB0gHJAcABtwGtAaMBmQGOAYMBeAFsAWEBVQFIATwBLwEiARUBCAH6AOwA3gDQAMIAtAClAJYAiAB5AGoAWwBMADwALQAeAA8AAADx/+L/0v/D/7T/pP+V/4b/d/9o/1n/S/88/y7/H/8R/wP/9f7o/tr+zf7A/rP+pv6a/o7+gv52/mv+YP5V/kv+Qf43/i7+JP4c/hP+C/4D/vz99f3u/ej94v3c/df90v3O/cr9xv3D/cD9vv28/bv9uv25/bn9uf25/br9vP2+/cD9w/3G/cn9zf3R/db92/3h/ef97f30/fv9Av4K/hL+G/4k/i3+Nv5A/kv+Vf5g/mv+d/6D/o/+m/6o/rX+wv7P/t3+6v74/gf/Ff8k/zL/Qf9Q/2D/b/9+/47/nf+t/73/zf/d/+3//f8LABsAKwA7AEsAWwBrAHsAigCaAKkAuADIANcA5gD0AAMBEQEgAS4BOwFJAVYBZAFwAX0BiQGVAaEBrQG4AcMBzQHXAeEB6wH0AfwBBQINAhUCHAIjAikCLwI1AjoCPwJEAkgCSwJOAlECUwJVAlcCWAJYAlgCWAJXAlYCVAJSAlACTQJJAkYCQQI9AjcCMgIsAiYCHwIYAhACCAIAAvcB7gHkAdsB0AHGAbsBsAGkAZgBjAGAAXMBZgFYAUsBPQEvASEBEgEDAfQA5QDWAMYAtwCnAJcAhwB3AGcAVgBGADUAJQAUAAQA9P/j/9P/wv+y/6H/kf+A/3D/YP9Q/0D/MP8h/xH/Av/z/uT+1f7G/rj+qv6c/o/+gf50/mf+W/5P/kP+N/4s/iL+F/4N/gP++v3x/ej94P3Y/dH9yv3D/b39t/2y/a39qf2l/aH9nv2c/Zr9mP2X/Zb9lv2W/Zf9mP2Z/Zv9nv2h/aT9qP2s/bH9tv28/cL9yf3Q/df93/3n/fD9+f0C/gz+Fv4h/iz+N/5D/k/+W/5o/nX+gv6Q/p7+rP66/sn+2P7n/vb+Bv8W/yb/Nv9G/1f/Z/94/4n/mv+r/7z/zf/e//D/AAARACMANABFAFYAaAB5AIoAmgCrALwAzQDdAO0A/QANAR0BLAE8AUsBWQFoAXYBhAGSAZ8BrAG5AcYB0gHeAekB9AH/AQkCEwIcAiUCLgI2Aj4CRgJMAlMCWQJfAmQCaAJtAnACdAJ2AnkCegJ8An0CfQJ9AnwCewJ5AncCdQJyAm4CagJlAmACWwJVAk8CSAJAAjkCMQIoAh8CFQILAgEC9gHrAeAB1AHIAbsBrgGhAZMBhQF3AWgBWQFKATsBKwEbAQsB+wDqANoAyQC4AKYAlQCEAHIAYABOAD0AKwAZAAcA9v/k/9L/wP+u/5z/iv94/2b/Vf9E/zL/If8Q///+7/7e/s7+vv6u/p/+kP6B/nL+ZP5W/kj+O/4u/iH+Ff4J/v398v3n/d390/3K/cH9uP2w/aj9of2a/ZT9jv2J/YT9gP18/Xn9dv1z/XL9cP1w/W/9cP1w/XL9dP12/Xn9fP2A/YT9if2P/ZT9m/2i/an9sf25/cL9y/3V/d/96f30/QD+DP4Y/iT+Mf4//kz+W/5p/nj+h/6W/qb+tv7G/tb+5/74/gn/G/8s/z7/UP9i/3T/h/+Z/6z/vv/R/+T/9/8IABsALgBBAFQAZgB5AIsAngCwAMIA1ADmAPgACgEbASwBPQFOAV4BbgF+AY0BnQGsAboByAHWAeQB8QH+AQoCFgIiAi0CNwJBAksCVQJdAmYCbgJ1AnwCggKIAo0CkgKWApoCnQKgAqICpAKlAqUCpQKlAqQCogKgAp0CmgKWApECjQKHAoECewJ0AmwCZAJcAlMCSQI/AjUCKgIfAhMCBwL6Ae0B3wHRAcMBtAGlAZYBhgF2AWYBVQFEATMBIgEQAf4A7ADZAMcAtAChAI4AewBoAFQAQQAtABoABgDz/+D/zP+5/6X/kv9+/2v/WP9E/zH/H/8M//r+5/7V/sT+sv6h/pD+f/5v/l/+T/4//jD+Iv4T/gX++P3r/d790v3G/bv9sP2m/Zz9kv2J/YH9ef1y/Wv9Zf1f/Vr9Vf1R/U79S/1I/Uf9Rf1F/UX9Rf1G/Uj9Sv1N/VH9VP1Z/V79ZP1q/XH9eP2A/Yj9kf2b/aX9r/26/cX90f3e/ev9+P0G/hT+Iv4x/kH+Uf5h/nH+gv6T/qX+t/7J/tv+7v4A/xT/J/86/07/Yv92/4r/nv+y/8f/2//w/wMAGAAsAEEAVQBqAH4AkgCmALoAzgDiAPYACQEcAS8BQgFUAWYBeAGKAZsBrAG8AcwB3AHsAfsBCQIYAiUCMwI/AkwCWAJjAm4CeAKCAosClAKcAqQCqwKyArgCvQLCAsYCyQLMAs8C0QLSAtIC0gLSAtACzgLMAskCxQLBArwCtgKwAqoCogKbApICiQKAAnYCawJgAlQCSAI7Ai4CIAISAgQC9QHlAdUBxQG0AaMBkQGAAW0BWwFIATUBIgEOAfoA5gDSAL0AqACUAH8AaQBUAD8AKgAUAAAA6v/V/7//qv+U/3//av9V/0D/K/8W/wL/7v7a/sb+sv6f/oz+ev5n/lX+RP4y/iH+Ef4B/vH94v3T/cX9t/2q/Z39kf2F/Xr9b/1l/Vv9Uv1K/UL9O/00/S/9Kf0k/SD9Hf0a/Rj9Fv0V/RX9Fv0X/Rj9G/0e/SH9Jv0q/TD9Nv09/UT9TP1V/V79aP1z/X79if2V/aL9r/29/cv92v3p/fn9Cf4Z/iv+PP5O/mD+c/6G/pn+rf7B/tX+6v7//hT/Kf8//1T/av+A/5b/rf/D/9n/8P8FABwAMgBJAF8AdgCMAKIAuADOAOQA+QAPASQBOQFNAWIBdgGJAZ0BsAHDAdUB5wH4AQkCGgIqAjoCSQJYAmYCcwKAAo0CmQKkAq8CuQLDAswC1ALcAuMC6QLvAvQC+AL8Av8CAgMDAwQDBQMEAwMDAgP/AvwC+AL0Au8C6QLiAtsC0wLLAsICuAKuAqMClwKLAn4CcQJjAlQCRQI2AiYCFQIEAvMB4QHOAbsBqAGUAYABbAFXAUIBLAEXAQEB6gDUAL0ApwCQAHgAYQBKADIAGwADAOz/1f+9/6b/jv93/2D/SP8x/xv/BP/t/tf+wf6s/pb+gf5s/lj+RP4w/h3+Cv74/eb91P3D/bP9o/2T/YX9dv1p/Vz9T/1D/Tj9Lf0j/Rr9Ef0J/QL9+/z1/PD87Pzo/OX84/zh/OD84Pzg/OL85Pzn/Or87vzz/Pn8//wG/Q79F/0g/Sr9NP0//Uv9WP1l/XP9gf2Q/Z/9sP3A/dH94/31/Qj+G/4v/kP+WP5t/oL+mP6u/sT+2/7y/gn/If85/1H/af+B/5n/sv/L/+P//P8UAC0ARQBeAHcAjwCoAMAA2ADwAAgBIAE3AU4BZQF7AZEBpwG8AdEB5gH6AQ4CIQIzAkYCVwJoAnkCiQKYAqcCtQLDAtAC3ALnAvIC/AIGAw8DFwMeAyQDKgMvAzMDNwM6AzwDPQM9Az0DPAM6AzcDNAMvAyoDJQMeAxcDDwMGA/wC8gLnAtwCzwLCArQCpgKXAocCdwJmAlQCQgIwAhwCCQL0AeABywG1AZ8BiAFxAVoBQgErARIB+gDhAMgArwCVAHwAYgBIAC4AFAD7/+H/x/+t/5P/ef9f/0b/LP8T//r+4f7I/rD+mP6A/mn+Uv47/iX+D/76/eX90f29/ar9l/2F/XP9Yv1S/UP9NP0l/Rj9C/3+/PP86Pze/NX8zPzF/L78uPyy/K78qvyn/KX8pPyk/KT8pfyo/Kv8rvyz/Lj8v/zG/M381vzf/Or89fwA/Q39Gv0o/Tf9Rv1W/Wf9ef2L/Z39sf3F/dn97v0E/hr+MP5H/l/+d/6P/qj+wf7a/vT+Dv8o/0P/Xf94/5P/r//K/+X/AAAbADYAUgBtAIgApAC/ANkA9AAPASkBQwFcAXYBjwGnAb8B1wHvAQUCHAIyAkcCXAJwAoQClwKpArsCzALcAuwC+wIJAxYDIwMvAzoDRANOA1YDXgNlA2sDcAN1A3gDewN8A30DfQN8A3oDeAN0A3ADagNkA10DVQNMA0MDOAMtAyEDFAMGA/cC6ALYAscCtgKjApACfQJoAlQCPgIoAhEC+gHiAcoBsQGYAX4BZAFKAS8BFAH4AN0AwQClAIgAbABPADIAFgD6/93/wP+j/4b/af9N/zD/FP/4/tz+wf6m/ov+cP5W/jz+I/4K/vL92v3D/az9lv2A/Wv9V/1D/TD9Hv0N/fz87Pzd/M78wfy0/Kj8nfyT/Ir8gfx6/HP8bvxp/GX8Yvxg/GD8YPxg/GL8Zfxp/G78c/x6/IL8ivyU/J78qfy1/ML80Pzf/O78/vwQ/SL9NP1I/Vz9cf2H/Z39tP3L/eP9/P0W/i/+Sv5l/oD+nP64/tT+8f4O/yv/Sf9n/4X/o//B/+D//v8cADoAWQB3AJYAtADSAPAADQErAUgBZQGBAZ0BuQHUAe8BCQIjAjwCVQJtAoQCmwKxAsYC2wLvAgIDFQMmAzcDRwNWA2QDcQN9A4kDkwOdA6UDrQO0A7kDvgPBA8QDxgPGA8YDxAPCA74DugO0A64DpgOeA5QDigN+A3IDZQNWA0cDNwMmAxQDAQPuAtkCxAKuApgCgAJoAk8CNgIcAgEC5gHKAa4BkQF0AVYBOAEZAfsA3AC8AJ0AfQBdAD0AHQD9/93/vf+d/3z/XP89/x3//f7e/r/+oP6C/mT+R/4q/g3+8f3V/br9oP2G/W39Vf09/Sb9EP36/Ob80vy//K38nPyM/Hz8bvxh/FT8Sfw//DX8Lfwm/CD8G/wX/BT8EvwR/BL8E/wW/Bn8Hvwk/Cv8M/w8/Eb8Ufxd/Gv8efyI/Jj8qvy8/M/84/z4/A79JP08/VT9bf2H/aH9vP3Y/fX9Ev4v/k7+bP6M/qv+y/7s/gz/Lv9P/3D/kv+0/9b/+P8ZADwAXgCAAKIAxADlAAcBKAFJAWkBiQGpAckB5wEGAiQCQQJdAnkClQKvAskC4gL7AhIDKQM/A1MDZwN6A4wDnQOtA7wDygPXA+MD7QP3A/8DBwQNBBIEFgQYBBoEGgQZBBcEFAQPBAoEAwT7A/ID6APcA9ADwgO0A6QDkwOBA24DWgNFAy8DGQMBA+gCzwK0ApkCfQJgAkMCJQIGAuYBxgGmAYUBYwFBAR8B/ADZALYAkgBuAEoAJgACAN//uv+W/3L/Tv8q/wf/4/7A/p3+e/5Z/jf+Fv72/db9tv2Y/Xr9XP1A/ST9Cf3v/NX8vfyl/I/8efxl/FH8P/wu/B38DvwA/PT76Pve+9X7zfvG+8H7vPu5+7j7t/u4+7r7vvvC+8j70PvY++L77fv5+wb8Ffwl/Db8SPxb/G/8hfyb/LP8y/zl/P/8G/03/VT9cv2R/bH90f3y/RT+Nv5Z/n3+oP7F/ur+D/80/1r/gP+m/83/8/8YAD8AZQCMALIA2AD+ACQBSQFuAZMBtwHbAf4BIQJDAmQChQKlAsQC4gIAAx0DOANTA20DhgOeA7QDygPeA/IDBAQVBCQEMwRABEwEVgRgBGgEbgRzBHcEegR7BHsEeQR2BHIEbARlBFwEUwRHBDsELQQeBA4E/APpA9UDvwOpA5EDeANeA0MDJwMKA+wCzQKtAowCawJIAiUCAQLdAbcBkgFrAUUBHQH2AM4ApgB9AFQALAADANv/sv+J/2D/N/8O/+b+vv6W/m/+SP4i/vz91/2y/Y/9a/1J/Sf9B/3n/Mj8qvyN/HH8V/w9/CT8Dfz3++L7z/u9+6z7nPuO+4H7dvts+2P7XPtX+1L7UPtP+0/7UftU+1n7X/tn+3D7e/uH+5X7pPu1+8b72vvu+wT8G/w0/E78afyF/KL8wfzg/AH9Iv1F/Wj9jf2y/dj9//0m/k7+d/6g/sr+9P4e/0n/dP+g/8v/9/8iAE4AeQClANEA/AAnAVIBfAGmAc8B+AEgAkgCbwKVArsC3wIDAyYDSANoA4gDpwPEA+AD+wMVBC0ERARaBG4EgQSTBKIEsQS+BMkE0wTbBOIE5wTqBOwE7ATrBOgE4wTdBNUEywTABLMEpQSVBIQEcQRdBEcELwQWBPwD4QPEA6YDhgNmA0QDIQP9AtgCsgKLAmMCOgIRAuYBuwGQAWMBNwEJAdwArgB/AFEAIgD0/8b/l/9o/zn/C//d/q/+gv5V/ij+/P3R/ab9fP1T/Sv9A/3d/Lj8k/xw/E78LfwO/O/70vu3+537hPtt+1f7Q/sw+x/7EPsD+/f67frk+t362PrV+tT61PrW+tr63/rn+vD6+/oH+xb7Jvs4+0v7YPt3+4/7qfvF++L7APwg/EH8ZPyH/K380/z6/CP9Tf13/aP9z/38/Sr+Wf6J/rn+6f4a/0v/ff+v/+H/EgBEAHcAqQDbAAwBPgFvAZ8B0AH/AS4CXAKKArcC4gINAzcDYAOHA64D0wP3AxkEOgRaBHgElQSwBMkE4QT3BAwFHgUvBT4FSwVWBWAFZwVtBXEFcgVyBXAFbAVmBV4FVAVIBToFKwUZBQYF8QTaBMEEpwSKBG0ETQQsBAkE5QO/A5gDcANGAxsD7wLCApQCZAI0AgMC0QGeAWsBNwEDAc4AmQBjAC0A+P/C/4z/Vv8h/+v+tv6B/k3+Gf7m/bP9gv1R/SH98vzE/Jf8a/xB/Bj88PvK+6X7gvtg+0D7IvsF++r60fq6+qX6kvqB+nH6ZPpZ+lD6SfpE+kL6QfpC+kb6TPpU+l76avp4+on6m/qw+sb63/r5+hX7NPtU+3b7mfu/++b7Dvw4/GT8kfzA/O/8IP1S/Yb9uv3v/SX+XP6T/sz+BP8+/3f/sf/r/yQAXgCZANMADQFGAX8BuAHwAScCXgKUAskC/QIwA2IDkwPCA/ADHARHBHEEmQS/BOMEBgUnBUUFYgV9BZYFrAXBBdMF4wXxBfwFBQYMBhEGEwYTBhAGDAYEBvsF7wXhBdAFvQWoBZEFeAVcBT4FHgX8BNgEsgSKBGEENQQIBNkDqAN3A0MDDgPYAqECaAIvAvUBuQF9AUABAwHFAIcASAAJAMv/jP9N/w//0P6S/lT+F/7b/Z/9ZP0q/fL8uvyD/E78Gvzo+7f7iPta+y77Bfvd+rf6k/px+lH6NPoZ+gD66vnW+cT5tfmp+Z/5l/mS+ZD5kPmT+Zn5ofms+bn5yfnc+fH5CPoi+j/6Xvp/+qP6yPrw+hr7R/t1+6X71/sL/ED8ePyw/Ov8Jv1j/aH94P0g/mL+o/7m/in/bf+w//X/OAB8AMEABQFIAYwBzwERAlMCkwLTAhIDTwOLA8YD/wM3BG0EogTUBAUFNAVgBYoFswXYBfwFHQY7BlcGcAaHBpoGrAa6BsUGzgbUBtcG1wbUBs4GxQa5BqsGmQaFBm4GVAY4BhgG9wXSBasFgQVVBScF9gTDBI4EVwQdBOIDpQNnAycD5QKiAl4CGQLSAYsBQwH6ALAAZgAcANP/iP8+//T+qv5g/hf+z/2I/UH9/Py3/HT8M/zz+7X7ePs9+wX7zvqZ+mf6N/oK+t/5t/mR+W/5T/ky+Rj5Afnt+Nz4zvjD+Lz4uPi3+Ln4v/jH+NP44/j1+Av5JPlA+V/5gfmm+c75+fkm+lf6ivq/+vf6Mvtv+6777/sy/Hf8vfwF/U/9mv3n/TT+g/7S/iL/c//E/xQAZgC3AAgBWQGqAfoBSQKXAuUCMQN8A8UDDQRTBJcE2gQaBVgFkwXNBQMGNwZoBpcGwgbqBg8HMQdQB2wHgweYB6kHtgfAB8cHyQfIB8QHuwevB6AHjQd2B1sHPQccB/cGzwajBnUGQwYOBtYFmwVdBR0F2gSVBE0EAwS3A2kDGQPIAnUCIALLAXQBHQHFAGwAEwC6/2H/B/+u/lX+/f2m/U/9+vym/FT8Avyz+2b7G/vR+ov6RvoF+sb5ivlR+Rv56fi5+I74ZfhB+CD4A/jq99X3w/e29633qPen96r3sfe998z34Pf39xP4M/hX+H74qvjZ+Az5Q/l9+br5+/k/+ob60Poc+2z7vfsS/Gj8wPwb/Xf91P0z/pP+9P5V/7j/GQB8AN8AQgGkAQUCZgLGAiUDggPeAzgEkATmBDoFiwXZBSUGbgazBvYGNQdwB6gH2wcLCDcIXwiCCKEIvAjSCOMI8Aj5CPwI+wj2COsI3AjICLAIkwhxCEsIIAjxB74HhgdKBwoHxgZ/BjQG5QWTBT4F5gSLBC0EzQNqAwYDnwI3As4BYwH3AIoAHQCw/0L/1f5n/vr9jv0k/br8Uvzr+4f7JPvE+mf6DPq0+WD5D/nC+Hj4Mvjw97P3evdF9xb36vbE9qP2h/Zw9l72UvZL9kn2TfZW9mX2efaS9rH21fb+9iz3YPeY99X3F/he+Kn4+fhN+aX5APpg+sP6KfuS+/77bPzd/FD9xf08/rP+LP+m/yAAmgAVAY8BCQKCAvoCcQPmA1kEygQ4BaQFDQZzBtUGNAeOB+UHNwiECM0IEQlQCYkJvQnsCRUKOApVCmwKfQqICo0KiwqDCnUKYQpGCiUK/gnRCZ4JZQkmCeIImAhICPQHmgc7B9gGcAYEBpUFIQWqBC8EsgMyA7ACKwKlAR4BlQAMAIP/+P5v/uX9XP3V/E/8y/tJ+8r6TfrU+V756/h9+BP4rfdN9/H2m/ZL9gD2vPV99UX1FPXp9MX0qPSS9IP0fPR89IP0kfSn9MT06fQU9Uf1gfXB9Qn2V/as9gf3aPfP9zv4rfgk+aH5Ifqm+i/7u/tL/N78c/0L/qT+P//b/3YAEwGwAUwC5wKBAxkErgRCBdIFXwboBm4H7gdqCOEIUgm9CSMKgQrZCioLdAu3C/ELJAxPDHEMjAydDKcMpwyfDI4MdQxTDCgM9Qu6C3YLKgvVCnkKFgqrCTkJwAhACLoHLgedBgYGawXLBCcEgAPVAigCeAHHABUAYv+v/vv9Sf2X/Of7OvuP+uf5Q/mk+An4c/fi9lj21PVW9eD0cvQM9K3zWPML88jyjvJd8jfyGvII8v/xAvIO8iXyRvJy8qjy6PIy84bz5PNM9Lz0NvW49UP21fZv9xH4ufhn+Rz61fqT+1b8HP3m/bL+f/9OAB4B7gG9AosDWAQiBekFrAZrByUI2giICTAK0QppC/oLggwADXUN3w0/DpQO3g4cD08PdQ+QD50Pnw+TD3sPVg8lD+cOnQ5GDuMNdQ37DHUM5QtKC6UK9gk+CX4ItQflBg4GMQVPBGgDfQKOAZ0Aq/+3/sP90Pze++76AfoY+TT4Vfd99qv14vQh9Gnzu/IY8n/x8/Bz8ADwm+9D7/nuvu6S7nXuaO5q7nzune7P7g/vYO/A7y/wrfA58dTxfPIy8/Tzw/Sd9YL2cfdp+Gr5cvqB+5X8r/3M/u3/DgExAlMDdASTBa4GxQfWCOAJ4wrcC8wMsg2LDlgPFxDIEGoR/BF9Eu4STBOYE9ET+BMLFAoU9RPME5ATPxPbEmMS2BE6EYoQyA/0DhAOHA0ZDAgL6Qm/CIkHSgYBBbIDXAIBAaT/Q/7i/IL7JPrK+HT3Jvbf9KLzcPJK8TLwKe8w7kntdOyz6wfrcOrw6YfpN+n/6ODo2uju6B3pZenH6UPq2eqI61DsL+0m7jPvVvCO8djyNPSi9R73p/g9+tz7hP0z/+UAmwJRBAYGtwdjCQcLoQwvDrAPIRGAEssTARUfFiUXEBjfGJEZJBqXGuoaGxsqGxcb4BqHGgoaahmoGMMXvhaYFVIU7xJuEdMPHw5TDHMKfwh7BmgESwIkAPn9yvuc+XD3SvUu8x7xHu8x7Vnrmen152/mCuXI46ziuOHu4E/g3t+c34nfp9/233bgKOEM4iDjY+TW5XXnQOk060/tju/u8Wz0Bfe0+Xb8R/8gAgEF4gfACpUNXBASE68VMRiRGswc3B6+IG0i5SMjJSMm4iZeJ5UnhCcrJ4gmnCVnJOkiIyEZH8scPRp0F3IUPBHYDUwKnQbTAvX+CPsW9ybzQe9u67fnJOS94Ivdldrl14DVbtO30WDQbs/mzszOIs/szyvR3dID1ZnXntoM3t7hDOaQ6mDvcvS7+S3/vQRdCv4PkBUFG0wgViURKm8uYDLVNcA4FDvFPMk9Fz6oPXY8gDrEN0U0BjARK20lKR9UGAERRAk1AfD4j/Ax6Pbf/tdt0GTJBcNxvcm4KbWusnCxgbHyssu1ErrCv9HGL8/B2GXj8+42+/YH8xTjIXsuajpbRflO81b4XMBgDGKnYG9cU1VYS5s+Vi/eHakKS/Z04fTMs7moqNeaQJHOjEKODpYxpC24C9Fi7WAL5yimQ1NZ3We2bQ9qBF21RzgsZA2C7uPSdr1qsN+syLL0wDzV0+yrBOIZFiq1MyA2rzGRJ5YZ5Amn+sTtpuQW4C7gbOTN6wH1nf5OBwkOIBJSE8kRCw7WCAoDf/3u+Nj1fPTZ9K/2k/kC/XQAcQOfBckG4wYKBnUEcwJVAGn+7PwF/MT7Hvz1/B7+aP+fAJ8BSAKPAnQCBgJdAZgA1f8t/7X+eP54/q3+Cv9///j/YwC2AOYA8gDbAKgAZQAbANf/n/97/23/df+P/7b/4/8NADIATABYAFcASgA1ABoAAADo/9b/zP/K/9D/3P/r//z/CgAWAB4AIQAeABgADwAFAP3/9f/v/+3/7f/w//X/+/8AAAUACQALAAsACgAHAAQAAAD+//v/+f/5//n/+//9////AAACAAMABAAEAAMAAgABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA==" type="audio/x-wav" />
Your browser does not support the audio element.
</audio>
fna = eventname+"_H1_whitenbp.wav"
print(fna)
Audio(fna)
GW150914_H1_whitenbp.wav
<audio controls="controls" >
<source src="data:audio/x-wav;base64,UklGRiSAAABXQVZFZm10IBAAAAABAAEAABAAAAAgAAACABAAZGF0YQCAAABXBhYFHQO+AE3+Dvwq+q74kvfC9ir2xvWi9d31n/YM+C766/z6//QCaQX+BocHEgfjBWYECgMvAgkClwKpA+sE/AWLBmcGiAULBCYCEwAD/gz8Mfpn+KT29PSI87Dyz/I/9Db3pvs3AUsHGw3YEd8U0RWwFNMR1w17CXMFRAIuABv/rv5i/qv9HvyR+Sb2QvJ37mPriulE6afqlO248aH2z/u7AOoE9QeSCaMJPwivBXACHv9d/MH6s/pY/I3/5wPNCIsNdBH/E9gU6BNZEYcN8ggrBML/LPy7+ZH4ofiz+W/7cP1Q/7sAggGXARwBUACE/wT/Bv+g/8EAOgK+A/gEkAU5BcMDJQGI/UP52fTn8Ajuv+xj7Qnwf/RE+p0AsAapC94O9Q/tDhoMEQiFAyf/gvvw+I/3RffI97P4l/kR+uD5+PiN9wn29/Tk9Df2Dvk9/UkCkAdhDCMQaRIFEwISqg90DPIIvQVXAxQCCAIDA5YEKwYmBwQHgAWfArn+YPpK9ifzg/Gh8XjzqfaY+oX+tQGVA9UDewLb/4j8OPmi9l31yPX898P7oADmBckKhQ6DEG4QTQ57CpYFaADB+1D4kfaz9pT4yvuz/5MDsAZqCFoIYga9Avn94/hs9HDxjvD78Xf1V/qn/2EErQcGCVwIDgbOAnT/zfx0+7D7bP08AIEDgAaXCFoJqQi4BvwDEwGb/g79qPxf/eL+twBaAlsDdAOWAuUAp/4v/Mn5rff+9cn0EfTQ8wT0rfTL9Vr3Ufmb+yP+1QCqA50GqAm8DK0PNhLyE3IUWhN6EPILPgYrALn64/Zy9cT2tPqYAGMH0w21EhUVaxSoEC8KvgFH+MjuMeZK363audiO2QndxOIe6lPylvopAnwIMw0uEIIRbhFOEIoOjAyuCjgJVAgRCFwICgngCaIKJAtRCzIL3wp3CgsKkwnzCPMHUgbUA1IA0vuR9gnx3uvI52vlM+U05yLrVvDv9fz6rf55AEIAUv5M+xD4ivWE9H/1m/iK/aED9gmCD1gTzBSVE98PSQrLA4z9qvgC9gr2uviT/bkDJwrXD/YT/xXPFZ0T6g9hC7oGlwJ1/5P99Pxg/XH+pv94AHUAWf8Y/e/5Vfbk8jzw3u4Y7+zwGPQa+Er8/v+lAvID4QO/Ag4BZP9B/u/9d/6h/w8BXAI3A3EDBAMJAqkAFv93/fT7rPq9+T75QPnK+dT6Q/zs/ZX/BAEOAqYC4wL/AkQD+gNHBSQHUwloC98MNw0PDEQJ/QSn/+H5Y/Tf79/suOt77P7u4PKh97D8gAGiBckI3Ar0C1EMTgxKDJYMYQ2yDlwQBxI8E3oTWBKeD1oL3wW//6X5P/Qa8Intnewk7bbuzfDf8nr0WvV59RH1k/SM9IL1y/du+xMAFwWlCe0MVQ6fDf8KDAeeApX+ofsg+gz6Bft2/L/9Xf4I/sL8yvqP+I72NvXT9ID1Lfej+Z/83v8tA24GlQmiDJEPUxK+FJEWeRciF04V7REjDVMHDgEG++/1YvLD8CfxVPPH9tT6wf7rAd8DYwR3A04BPf6r+gz31/N38UbwevAa8v300Pgl/YMBgwXWCFQL/wzzDV0OYg4YDnsNcQzXCocIcgWiAUf9rfg69Fjwae2362frc+yr7sDxU/UN+bD8GgBKAz0G6AglC7gMYw0ADZMLVwm5Bj0EYQJ2AZABgALnA1QFYAbDBloGJQU6A74A4v3c+un3SvU68+jxcfHc8RzzDfV/9zr6DP3I/1ACkwSDBhcIQgnzCRsKqwmdCPkG1gReAs//dP2d+436Z/ot+7b8uv7kAOgCjQS7BX4G9QZHB4kHsweVB+oGZQXWAj3/1/oj9snxge7s7HHtJvDE9Lr6QAGBB7cMTRDsEYMRQg+KC9wGwgHD/E/4uvQ78uXwsfCC8S3ziPVn+KL7Ef+FAskFoAjFCvML8AuVCtgH1wPg/mz5HPSq78jsBey07dnxJPj8/4oI3RABGCUdtB9sH2ccDRcKECkIOADy+OPycO7T6x/rRuwh72nzv/is/qQEFgpyDjsRFRLSEIANZwgHAg37N/RL7v7p2ucw6AjrGPDL9k/+swUIDIkQthJpEtgPgQsUBlQA/Pqh9q3zT/KE8hv0v/YI+oP9ugBIA+MEagXyBL0DMQLEAN//xf+OABwCIQQwBs0HggjyB+oFagKy/Tf4p/LO7XvqYenv6jrv8vVu/sEH3hC8GHcebyFhIWke/xjgEe8JEAIL+3f1sPHS777vIvGF81r2Hflg++j8qv3O/aH9ev2l/VH+iP8sAQYDxwQgBtEGsQa9BRAE2wFZ/8L8TPol+Hb2Z/Ub9af1C/cp+cf7lf4/AYcDSQWKBnMHQQgyCWoK5QtoDY0O0g68Df8KlAbIACz6cfNL7Uroy+Tx4rXi+OOW5m3qZe9a9RX8NAM0Cm4QOBUDGHwYohbQErMNLAgrA4L/wf0a/lwA+QMfCN8LVw7jDjYNcAkSBOr95vft8rXvo+7G79vyYfe7/EECZQeuC8sOjhDqEPcP6Q0QC8cHbwRUAan+evyz+in5rvce9nP0wfI48RHwfu+g73nw8PHZ8wb2Vvi7+jv96v/ZAgwGZgmqDHgPZBEEEg4RZg4tCr8EqP6S+C7zFO+u7CTsVO3g7z/z3fZC+iL9af81AcICUAQLBgAIFgoSDKkNlQ6jDsANAQyXCc4G9gNYASX/b/0t/ET7nvo3+if6nfrN+939xwBWBB4IjAsCDvYOEw5TCwsH4QGv/FL4fvWZ9J/1L/ih+y//JwIRBMQEawRsA0gCcgEyAY8BWAIyA7kDmwOrAusAh/7M+xf5xfYl9W70tfTm9cj3/fkS/JX9Kv6f/f/7h/ml9trzovFi8FbwjvHw80X3PPt4/5QDMAfvCY0L5Qv8CggJbwa5A3oBNgBEALYBVQSlB/8KrA0KD6wOcAyICHcD+f3m+BP1MPOs86H20/uvAl8K5RE/GJMcTh4+HZYZ6BMEDdgFSP8G+oT25fQG9ZT2G/kg/C//4wHuAxEFIgUIBLkBQP68+WX0je6h6Cnju97q2zDb1dzZ4Ozmd+6s9qj+kgW9CrsNZw7kDI4J7wSs/3L67/W28jXxqPEU9Ej46/2CBIELShI9GMAcTh+RH3gdShmlE2kNkQf+AkcAmP+iAMECGAXLBjMH/AU6A1r/B/sK9xb0pvLo8rj0s/dP+//+TgLtBLkGtQcBCMMHIQcwBv0EjgP0AUwAxv6Y/fj8BP22/eH+MQBCAbABNQG7/2P9hvqd9yX1g/Pp8kvzZ/TN9QX3o/dn90/2lfSm8gfxN/CS8EPyOfU1+dT9pgJIB2kL1Q5yETgTLBRVFMATexKWECcOSgshCNMEkQGL/vL78Pmk+Bf4Pvj2+A76UPuM/KH9fP4Y/3T/i/9T/8H+zP2B/Ab7pPm8+Lj47vmB/FIA9wTNCREOChEuEkQRag4YCgQF/v/J+wD5+Pe/+B/7r/7pAkcHSAt8Do8QQRFwEBwOZwqfBTQAsvqp9Zzx5O6g7bbt1+6d8Jzyf/QU9kf3Ifi7+C75k/n7+XP6BPux+3v8Wv1H/jD/AQCpABgBRwE5AfcAhwDr/xn/DP7J/Gz7Mvpu+YP5xPpc/ToBDgZNC1IQfRRRF4kYHhhBFkwTsQ/iC0QIHgWbAswArP8m/xn/Wv+1//H/2f9D/xf+UvwO+nf30fRo8o3wiO+J753wqfJx9aL44/vZ/jMBpwL3AvgBpP8l/N73avOL7xDtsezk7sPz9/rAAxMNvRWZHMIgtCFfHyga2BJ/CkYCSvtu9j703fT/9/388gLhCNoNIRE/EhIRwg24CIQCz/tC9X7vDeta6KDn6+gH7Izw3vVB+/r/aAMrBTIFxgOAASn/jf1W/eH+KALBBuMLhhCME/sTLhEHCwYCQ/dE7MLiTNwB2lHc5OKt7CH4fgMlDeETDxeyFlwTBA7UB/QBX/2++lz6JPyk/zAE+Qg0DToQpRFcEZUPxwyQCZMGVwQnAwADkgNTBKME9gP6Aaf+QfpI9VrwG+wV6bPnL+iV6r3uT/TH+nsBtQfHDCoQmREYEfEOmgucB3UDjf8m/GD5Q/fC9cn0RPQg9E30uvRa9SX2GvdG+Ln5ifvF/WoAZAOLBqcJeAy+Dj4QxRA4EJoOEAzoCJEFjAJcAG//AwAjApYF4AlWDigSgRSnFB8SxgzkBCj7jvBE5nndMtcl1KbUndiO37XoGvOy/XsHlA9JFSgYDBgpFQ0QkgnDArP8Svgh9mb21vjQ/H0BAAaoCQsMHA0bDXsMtgsrC/8KFgsdC6kKVQnjBk0Dyf69+bb0TPAE7UHrLuu+7LfvuvNb+DX97AE7BuoJyQyrDmcP2Q7uDLMJWgVAAOL6y/V58UjuYuy/6y/sau0q7z7xkfMk9gP5MfyY/wkDRAYBCQcLOwytDI4MKwzRC7kL9wtvDOMMAw2GDEQLRAnFBi8E/gGgAFUAGwGqAocEJAYJB/EG3QUKBNYBof+q/QT8mfpH+fX3tfbD9Xz1OvYv+EL7A/+9Ap8F8wZMBq0DhP+P+qz1pfEG7wHuee4R8FPy0vRA93z5iPt9/XP/dQF3A1cF6wYMCKEIpAggCCsH3gVVBKgC8ABF/8D9ffyZ+y37Sfv2+y392f7UAO0C5AR1BmYHmQcZByEGGQV6BLEEAQZmCJML+w7vEboTxhO2EXsNVwfd/9T3G/CG6b/kLuL64QfkCOiR7SL0OftLAtUITw4/EkYUMhQREjYOOwnlAwX/UPtE+RD5kvpj/ecAaQQxB58IRAgABgYC4PxV90nyi+6x7PHsG++p8uD2/fpd/pcAlAF8AakAk/+r/lH+xP4aAEMCCAUYCBALiA0kD6MP4w7vDP0JZQaVAgf/JPxE+pr5MPrn+3b+cQFWBJcGrAcxB/YEFwEE/HH2SfF97dnr1ux88Fn2i/3nBDQLZg/TEFQPSQt/BQj///he9MvxgPFG84j2dfo0/hYBvwI0A9ECKgLdAWQC8wNpBlkJHgwHDnwOJQ0FCn0FRABH+3v3qPU99i/5+/27A10J0A1EEEQQ0A1QCX4DSv2o927zMPEl8SPzrvYO+3X/IQN6BSAGAAVNAnj+Gvre9WDyGvBS7xjwUfK79QH6uf5wA6oH6Qq9DNcMGguuB/0CsP2I+E70pfH08Ffyo/Vt+iAAEwaVCwQQ3RLRE8sS/A/RC+cG7wGS/U/6cvgF+Nz4pPr2/G//vgGvAy0FOgbiBjAHJwfDBv4F2QRcA5oBrf+q/af7wPkY+N72R/aF9q/3u/ly/Hn/XAKuBBwGfgbgBXcEkAJ5AHD+lfzy+n75J/jk9r310fRZ9Jr01vUv+Jn7y/9MBIYI4wvyDX8Oog20CzgJuwayBFgDqAJfAhgCbQEeACX+sfsk+e72ePUJ9bv1ePcC+gD9CQC5AroE0wXvBR8FkwOVAXn/kf0p/IH7xPsG/Tz/NQKcBfsIzwuoDTwOfA2aC/II+wUdA6IAov4F/Zz7Mvql+PP2QfXT8/vyBvMj9Fr2fvk2/QMBXAS+BsMHNgcVBZYBIf0++I/zue9P7b/sQO7I8Q33hf16BCULyBDRFPIWKBe4FRkT2w+KDJwJYwcIBpIF6wXmBkIIqgnBCiELcwp3CBMFWACH+gH0Re3d5kvh/dxI2mHZXto53dHh6Ocm7x33VP9HB3wOfhTtGIobPRwlG5UYEBU8EcMNOgv/CSMKYQspDbsOVg9aDnMLpAZGAPz4k/Hq6tPl9OKm4ufkT+km74P1e/tNAIcDDQUXBRYElAIZAQsAqP////sAbQIZBLsFHAcPCIIIfgglCK0HUgdHB7AHmAj3CacLbQ3wDsQPdA+UDd0JPgT1/If0vuuF48vcVNij1tzXwdu94QLprfDy90L+VQM2ByAKbQxzDnAQhhKyFNcWwBgnGrwaMxpNGOgUCBDfCcoCUfsR9LPtz+jZ5QjlVOZ36fjtRvPO+Ar+lgI5Bt4ImAqRCwAMGQwEDNULiQsMCzwK9ggfB60EqwFA/qf6MPc09Ajy8/Ae8ZHyLPW0+NL8KAFZBQ4J/QvvDcMOdA4bDfQKVQieBSQDJgG7/9T+R/7g/W790fz8+/r65fnh+Bf4qPel9wj4s/hz+Q36T/oZ+mf5Tfjy9ov1SPRb8+nyEvPs83/1y/e7+iv+4AGVBfYItgubDYgOiw7UDbIMfAuCCvsJ/Ql2CjQL7gtVDCgMQQugCWkH3ARAAtX/xf0l/Pj6Ovrm+fn5bfox+yb8Hv3r/W/+qf6//vH+if++AKICDQWeB8kJ7gqCCisI4wMF/kD3h/Dd6ijnAeab573ryPHc+P7/PwbqCpYNMg75DFkK1wbyAhf/jft9+PL15vNV8kjx3fBN8dzyyfU2+hIABgdvDmcV4hraHYkdmBlHEnQIf/0P88zqBuZ25RHpCvD4+B4Czwm7DjUQTQ66CakDeP1m+GH13/TV9sz6//+PBbAKyQ6IEd8S8BL4ETAQyg3mCp8HEwRtAO383/mX91v2VvaL99T54fxFAIYDLQbXB0UIYQdGBTICe/5/+pX2CfMW8OjtmOw07LfsEO4k8NDy5/Uz+XP8XP+gAfsCPwNhAoEA6v0E+0f4KfYF9RP1Xfa4+NL7NP9eAt4EagbtBpwG5AVbBZYFCgflCQQO8RL/F2gceB+zIOofRR0zGVAUPg+CCnAGHwNvACH+7fue+SX3m/RA8mLwSu8f79XvK/Gy8uXzS/SZ887xPu+D7F/qjumV6qTti/LG+Jv/QAYHDG0QKhMtFJMTlRF+Dp8KRwa/AUr9KPmj9QfzofGn8SrzA/bN+fj93QHmBKIG5AbDBZoD9gB5/r38Ofwu/Zr/OAOQBwMM6w+xEuMTSBPhEOoM2gdPAgr9y/g/9tn1uveh++8AxQYpDDwQYBJSEioQRgwzB4gBy/tn9qvx0e0M64LpTuls6q7ss+/v8rv1fvfG93b2z/Nz8ErtTetX6+7tJPOP+lYDUwxGFA0a2xxmHPkYZxPgDLIGAgKO/4//wQF7BeAJDg5EEQETCBNeET0OBgoqBRwAS/sW98/zrPHI8BjxcfKS9C/3CPry/Nj/sQJ6BRkIXAr0C4IMrAs4CSIFtf9/+Ubz4u0R6ljo5eiM69PvDPV3+mP/RwPcBRoHOgegBsoFMQUsBd4FKAe1CAkKoQoUCioI7wSsAOH7IPf+8vDvQO4B7hXvNvEG9CL3NPoH/Yf/wAHPA88FxwejCTsLYgz5DAANmgwBDHQLIgsXCzcLRAv5ChgKgwhBBncDZABN/Xf6Hvhw9oz1ffVA9sL34vls/Bn/jwFxA3AEXwRHA2IBF//V/Ar7/PnE+Ub6PvtR/C/9pP2r/Wj9Fv3w/BX9ff36/Uj+KP50/Sv8evqr+Bj3Hfb/9eb21/i0+z//JgMLB44KWQ0sD+YPiw86DiwMpQnnBiwEnAFS/139yvus+h36OPoU+7T8Af+7AYME2gY7CDgIlgZoAxb/TPrq9dPywPEc8+f2tvzCAxELoBGIFiMZFhlUFh4R7wl2AXn4xe8Y6BHiJt6c3ITdvODz5bPsbfSI/GoEhwtkEZ8V9RdNGLgWehMAD9sJqQQFAGf8Gfoy+Zf5DvtI/fL/uAJQBXAH2AhQCbEI7AYTBF8AMvwE+Fb0k/H675XvNvCH8SHzpfTR9ZL2BPdx90D42/mc/LEAEgZ4DGITIhr4HyYkDiZSJd8h+xs5FGQLXwIJ+h7zK+546wvrp+zV7/fzWPhL/Dv/vgCpAAj/H/xi+Gf0z/A37hrtv+0w8DT0WvkJ/5IEVQnJDJwOug5IDZsKIQdSA5//avwL+sb4yfge+qj8GQD7A7sHuwpyDHsMrwosB1ACtPwN9xLyYe5i7D/s4+388A31fvmz/R8BYgNYBCkERANLAvEBxwIWBcEIRw3bEZYVqReRFy8VzxAXC+IEGP+B+qj3yvbR92T69f3aAWsFCQg8CboIcgaPAn391fdX8sft1+oL6qDrhO9P9VH8owNLClkPDxIAEicP7gkkA+L7VfWT8GbuIu+b8if4x/5LBZQKvA1HDjMM+gd3Arr8yvd49DTz+PNW9pb54fx1/8gAqQA+//P8Y/on+L/2dvZe9135N/ye/z4DxQbcCTMMhw2vDaQMiQqoB2oERgGt/vb8Tvy1/P793//2AeADPAW5BSQFdgPdAL/9pfoq+Nf2BvfP+P/7JQCmBN8IPwxnDi8Pqw4aDdQKPwi5BY8D8wH5AJQAnQDeABwBJgHcADMAN//4/Yz8/vpK+V/3KfWm8vXvYe1f63LqDut47avxUvfZ/YQElgpoD4MSphPEEgIQsAtCBkoAbvpV9Zjxpu+w75nx+vQ4+ab9qAHYBAcHPgivCJoIOwi7BycHdAaHBUoEsALCAJv+YvxG+nf4JPd19o72hvdu+Ub89P9FBOAITA34EFUT8hObEmUPsgoeBWb/P/pA9r/zy/Is8270BPZh9x34CPg39/z10/RL9Oz0F/f0+mgADwdKDlMVXhuyH9IhiSH3HoUa1hSfDo8INAPo/sb7sPlX+Ev3G/Z29EbywO9c7bjrbevc7A3wpPTu+Q7/JQOFBcwF9QNQAG77/vW38DXs6egX59jmI+jZ6sfup/Mc+bT+7QNJCFgLywyHDKcKhAetA9j/xPwj+3z7FP7dAnsJQxFWGbggcSaqKcspnSZZIK8Xuw3VA1z7cvXK8nzzB/dj/DgCIAfmCckJmQbAADD5L/Ea6h7lA+MI5OLn0u3U9NX76wF/BlQJjAqFCrUJhQgyB8QFGATuARD/ZfsO917yzu3o6Srn9OV75svowewP8kD4vP7VBOUJXQ3kDmYOJAysCMkEYAFJ/x3/FgEDBUEK5A/bFCsYIRl/F4IT3g2UB7sBRv3U+pP6P/w0/5ACZQXYBlEGjgOt/iX4ufBT6ebiTN4j3LzcDuC95SftgfXu/aAF8Qt0EAETtBPjEg0Ruw5oDG8K/wgdCLQHpAfWBzwIzgiDCUEK4QotC/QKEgqACFkG1QNBAfL+Mv00/Ar8m/yp/dr+xf8KAGb/t/0M+6X35vNN8FvtgusR6yXsqO5R8rL2RvuJ/w4DkwX8BloH1galBQEEIgI9AIX+J/1K/Aj8bfx0/Qr/CwFKA4oFgwfkCF8JrgioBkoDwf5o+cPzbO736eDmeOXe5QbowOvK8NX2iv2LBHIL0xFCF2cbDh41HxEfAx6DHAgb6hlTGTUZSxkmGUMYIxZrEvgM6AWb/aX0xOu/40/dBNkw19/X2tqx38/llexs89j5f/8mBLQHIApwC7AL9gpiCSQHfQS2ASH/AP2L++D6APvN+xP9jf72/w8BrgG7ATMBKADG/kz9E/x5+9H7Rv3J/wIDZQZHCQ0LUwsJCnQHIAS9APr9XPwu/G792//3AioGyghAChcKEQgrBKn+DvgV8ZzqfuV24v3hNOTe6HLvMvdM//4Gpg3OEioWlxcSF7gUyhCqC+EFGQAM+2731/Wh9sn56P4tBX4LqxCtE+0TaRG9DAIHjgGi/R/8VP3pAPkFRAt7D4oR0xBGDV4HAAA7+B3xd+u+5wrmGuZ2543p2+sA7s3vRfGU8v3zyfU3+Gv7Yf/nA6UIIA3YEGATcBTuE/ERrg50CpcFcgBc+672vfLU7yru1+3X7gbxLPQB+DP8bgBfBLYHNQq1CzIMyAu5Cl4JGAg8BwMHgQejCDEK2AsxDdYNcA3EC8QIkwSA/wT6sfQg8NbsN+tr62Dtx/An9fH5mv6tAuMFHghpCesJ2glsCdAIKwiSBw4HmAYiBpUF3wT2A9oCnAFTABn///0S/VP8xftn+zz7Qftq+537t/uZ+y/7ffqd+bP45fdM9/H2x/a19pr2X/b89YP1GPXs9Cf14vUb97z4n/qd/JH+XwD5AVcDfQR7BXEGggfPCGgKQgw1DgMQZBEZEvsRBxFiD1ANJQsyCbMHxAZcBlsGkgbRBvUG8gbNBqAGiQajBvUGcAfvBz8IKAh1B/4FpwNmAEb8cPcv8vLsQOil5JzicOI15Lbngezv8Tn3lPtJ/tL+9vza+AfzX+z+5Q/hm95d35vjGusg9YgA8wv6FW0dhCEEIj4f/BlUE24MWgbeAWn/Bf9nAAwDUQaXCV4MWg52D8oPjw8HD2sO4Q11DRgNpwzzC8cK9AhXBuoCyf43+qT1m/Gt7lvt8u1+8Lb0C/q1/9EEkwhfCvoJjAejAwv/o/os9yL1qfSM9Vj3fflq+7L8Ev1//Bf7GfnS9pP0pPJH8bfwKfHM8rj15PkW/98EogqjDysTqBTHE4kQQguNBDn9KPYv8Pnr8+k56pbsi/Be9T/6a/5cAeMCNwPjAqcCQAM3BbUIew3vEkMYpRxpHzAg7h7iG34XRBKqDBAHuQHa/KD4P/Xt8tTxBfJm8671Z/gJ+wz9Bv7F/Vz8IPqa9271MfRJ9NX1nfgg/Kr/egLrA5gDdAHW/W35IfXq8Zfwo/EZ9Yr6HwHGB10N7RDaEfsPpAuOBbv+RPg282vwbfBo8yH59QDpCbsSEBqmHokfRhwIFaEKbP4Z8m/n8N+g3Mrd+uIS63r0e/2OBLAIhAlkBzoDRP7O+fL2ZvZi+KH8dgL4CDAPSRS4F0UZChlZF54URBGeDeMJMAaPAgr/tvvC+HX2IfUR9W32IvnX/OoAjgTjBioH8wQ5AHf5lfHL6WTjgt/d3qfhf+eG74z4SAGTCJcN6w+gDzQNdQlWBbsBT/9g/t7+ZgBkAjoEawW4BSMF7QN7AjcBdQBfAOwA5QH7AuIDcASrBM4EMQUnBtwHOwrpDFQP1xDkECkPrgvaBmMBLfwb+OX17fUi+AP8qwADBe8HjAhfBnEBWfoe8hHqgeOB37DeGOE35hLtc/Qh+yAA5gJpAx4C2/+X/Tz8Z/xH/poBxgUCCooNzA98EJgPVw0aCk4GYAK1/qT7gfmT+BL5Fft//vECyQcxDFEPgBB1D1kMzgfBAkH+O/tL+pf7y/4kA6MHNwsBDXkMjwmqBJP+SfjP8vzuU+3t7XjwSvSK+F38F/9aACQAyv7U/OX6k/lC+Rj69ft//jcBnwNNBQ0G5wUeBSAEZwNiA1cEUwYlCWMMgQ/kEQATbhL6D68L1wXy/qD3kvBw6snlCONt4gjktOcY7aPzoPpHAeEG4Ar4DCMNnQvLCC0FRQGP/W36J/jg9pb2J/de+AH65fvy/SoAowJvBZYIAwx/D7YSOxWaFm4WdxSvEFUL8AQ8/g/4OfNc8NHvlPFJ9UX6tf+8BJ4I2wpCC/AJSwfmA2gAa/1j+5H6+vpw/Jr+AgEoA4sEvwSCA9MA9vx0+Av0ivCm7tjuOvGC9Qz77QAmBsoJLAv+CV4G0AAn+mLzhe1w6bvnouj06yLxXPe1/VgDsQd8CtILFQzQC5YL1gvGDFcOPBD+ERoTIBPSESoPXwvUBgYCbf1u+VL2RPRa85rzAPV499767/5RA5QHOwvQDfYOeg5eDNoIVQRV/2b6D/a68qzwBfC58JryVfWC+KX7Q/7y/2cAk/+Z/dn61Pcd9TbzgPIp8y71Xfhl/OUAfwXhCdANKRHgE/YVbhdEGGYYtxcOFkwTYg9iCo0ETP4p+LryhO7X68HqCes97NjtX++B8CjxdfGy8TzyavNx9Vv4/vsAAOgDOQeKCZ4KegpgCcgHRQZqBaYFKwfiCWIN/xDnE0sVhxRQEccLggRz/L70iO7B6vnpSexN8TT45f8iB8YM6g8PECsNsAdyAI74NfGH61voHui66p7v2/VV/AQCJgZhCMkI0wcrBowEjgOLA44EYAagCOUK1AwvDtYOtw7GDfULNwmJBQMB6Pul9tTxGu4I7PXr4e118Qj2wvrM/nsBewLdAQsArP1y+/H5gPkw+tj7Kv7LAGkDvgWcB+wIuAkiCmEKswpLC0kMpg04D7EQrBG/EZQQ+w39CdwECv8T+Yfz3+5k6yjpC+jN5ybo4Ojl6ULrFe2A747yI/b9+b399wBPA4QEhQRzA50Bfv+l/aX8+vzw/ocCcQcQDZQSHhf1GaYaLBnpFZYRFg1FCcMG2QVrBgEI5AlJC3wLCgrSBgsCMvzt9fPv7epk57Hl++Ut6Prr5fBM9n370f/HAiAE4ANTAvj/Yv0p+8f5j/mf+uP8FQDKA4MHvwoQDS0O9w18DO4JlwbLAuD+I/va9z71evOs8ufyKPRY9kT5nfz7/+wCAwXxBZ4FOgRBAmkAfP8hALcCJgfZDM0SwBdsGswZYhVcDaQCwPaJ69biGN4J3o3is+rr9GD/VwiKDloR4hDcDWYJuATdAIH+0P2I/gsAmAF2AiICcQCY/SL60fZu9JjznfRg9177zv/IA4MGgQerBlsEQQE5/g/8VvtE/Kv+CQKzBfUIRQtbDDoMHgtlCWUHWAVJAxsBpP7C+4H4HfUG8r3vue5F72vx8/Rx+Vb+BwP6Br8JFwsAC7EJlwc9BTMD7AGnAWEC2gOoBVYHeQjMCDEIuQaUBAYCW//c/Mn6U/mh+MT4v/l3+7X9HgBAApsDuQNTAl//Jfs99nvxx+3w633siO+09Dj7BALzBwAMeA0aDCEIMQI9+1X0h+6w6m3pA+tj7yn2pv70Bw4R9xjdHj4i+SJQIdEdLxkdFCsPsArFBlEDIwAN/ff58vYy9PvxiPD37z/wLvF+8uHzFfXz9XP2sfbp9mT3afgm+qD8rv/+Ai8G1wiiClYL3wpOCdgG1gPAAB7+dPwx/JP9lADvBB4KdQ8zFJwXDhkdGKEUwg75Bv/9tvQD7K/kRN8I3Pbazdsr3p3hvOU26tfuivNJ+Bj98gHIBnoL5A/lE18XOxpeHKod8x0IHbwa+xbaEagL3AQM/sT3fPJ/7vHr1eoe67bshe9n8yv4h/0SA0oInwyKD6gQ0w8tDSMJXQSf/6P7+vj697L49vpp/pQC+QYeC5oOFBFJEgISHBCLDGgH/ADG+WvysOtW5vvi/OFj49XmpOvi8JX18fiA+kb6uPih9uj0X/SQ9an4d/14A/gJLxBgFfgYnxpFGiEYmhQyEGkLqwZIAnj+Yfsi+d33sPex+OT6K/42AokGdgo4DRkOkwyCCDYCe/p68ozr9Oae5e/nsO0Y9vP/0wlXElcYFhtXGmIW8Q8NCOT/kfj28p7vqe7f78Hyq/bz+v/+VwKyBPYFOga2BbgEjwN6AqMBHQHnAPkARwHGAW0CMQMJBOQEqQUyBkgGqgUQBEIBKP3Y96vxPeta5e3gz96i36Tjnurf81D+oQh7EbYXiRqvGXMVpw5+Blz+kfci85vxAvPj9nH8sQKnCHMNbRAzEbcPPQxXB9gBs/zZ+Az3vPfu+jEAtgZsDTETCBdDGKcWcRJMDCwFIv4p+AT0GPJo8pf0APjV+zz/bAHMAQMAGPxx9tzvbelV5KbhJOIV5jjtzfa7AcAMnhZFHvUiSyRHIkgd+hVFDS0Esvux9M/vZ+2L7QTwYPT7+Q4AywVpCjsNxQ3OC2sHBwFg+WzxPOrL5M3hkOHu42DoGu429OL5gv7HAbcDogQLBYUFjwZzCDULjw4EEvwU5RZZFysWdROLD+gKFgaYAdn9Gvty+dH4Cvnh+Rn7f/zr/Ur/mADkAUQDzAR9BjgIuAmXCm4K9AgbBiECif3/+C/1mvJz8Z/xu/JB9K71ovb39sv2dfZx9jj3JvlU/I8AXQUYCg4OrRCeEdIQhw42C3oH9AMlAVv/oP7A/lT/2P/B/5f+Evwp+CHzie0i6L7jGeGs4KDiw+ai7KzzTfsOA6AKxhFJGOIdKyKtJPYkwSIRHkMXDA9cBjj+j/cO8wzxe/H089X3WvzAAGEEwAaWB9cGswSOAfb9kfoF+Nb2Ufd1+fH8KQFaBbYIkQqGCo0I/AR2AMX7sffa9JXz6fOR9RX44fph/R3/yf9L/8H9bfuv+PH1nvMX8qXxc/KG9L/32/t+AD8FrglpDSgQxRFCEr0RZRBvDgsMXQmDBpsDyQA3/hT8hfqc+Ur5avnO+Vj6CPv/+3T9l/92AuIFaglpDCQO/w2gCxEHwwB/+T3yAuy75xbmcufN67zyb/vDBGkNFRS7F8gXSRT0DQ8GMf7l91j0E/Th9uD7vQELB5IKkQvgCe8FmgD8+iX27/LO8cfyb/UN+b38pv8kAegABv/o+0H44fSQ8ujxPPOM9ob7mAEMCB4OHhOFFgkYoheDFRESyg0yCbsEugBg/cH65fjR95H3Mfi2+Q38AP82Aj4FoQf7CBAJ1wd8BVcC3/6R+974FPdN9mz2JfcT+NT4JPnq+D/4Z/e89qD2ZPc9+TT8GgCPBAEJxgw5D9YPXA7XCqYFa//y+BPzk+4K7MXrwe2o8d32mfwPApIGsglFC28LjwonCbsHuQZcBqMGUgcACC4IZQddBQ4Cw/0J+Zn0MPFl74vvpvFu9WX66/9eBTUKDA62EDYSthJ0ErERpBBtDxcOlAzMCqQIDQYJA7L/NfzV+Nn1ifMb8qnxJ/Jl8xf15PZ/+LH5Zfqm+pf6a/pX+oj6Hvsj/ID9Af9TABYB5AB5/8b8D/nl9Bfxhu7z7czvD/RD+o0B3wgqD5cTpRVBFb0Svg4OCnUFjwG3/v38PPww/JH8Mf35/ej+/f8jATIC5wL+AkoCygC7/ov80vof+tv6JP3AACgFnQlVDaUPJhDNDugLDQj2A1sAyP2C/IH8dP3e/jYAEAEuAZQAfP9C/k397PxF/Uf+rf8MAfMB+wHpALb+kfve9xv00fB37mLtv+2R77fy7/bm+zEBXQbpClYONhBFEHsOEwuIBnsBkvxY+Cb1JPNM8n3yj/Nc9cP3ovrL/QIB/ANoBgAInAg4CPoGKAUaAywBpv+y/lf+gP4M/9//8ABMAg0EQQbgCLwLgA7CEBYSJRLDEPcN/glFBVQAv/sJ+Jv1sfRW9V/3dvog/tMBBgU8BxYIVwfsBPAAs/u09abvV+qY5hflQeYk6mvwZ/gjAY8JohCJFb0XGRfaE4wO9AfxAFr63PTq8LTuI+7y7rjwB/OA9d73/vnd+4/9L//TAIYCQQTzBYsH/AhGCnELgwxyDRkOOQ6CDaYLcAjaAx7+s/dQ8c/rEujb5q7osu2f9b//BAsuFvIfMiciK18r+idxIY8YWQ7gAy/6HvJQ7Bjpeugx6rbtU/Iz9337a/5i/xL+hPoa9Y/u0ufq4cvdLdx03Z7hSOjB8Cn6kgMlDDQTShg2GwUc+xqCGBUVMhFEDaEJhQYTBF4CZwEfAWsBIwIWAxME7QSABbIFcQW0BHcDxAG5/479lPsp+qT5PPr4+6T+1AH/BIwH+gjyCFcHRAQKABz7APY88UPta+rm6Mbo/elo7NHv7/Nm+Mv8rwCzA5kFWgYrBnkF1ATPBNsFKwiiC88P/RNbFyIZwBj9FQURYQriAnH76fT47wPtK+xO7RfwCvSP+AH9wABFAzkEfwNFAfn9Nfqs9gL0s/L58tH09/cD/H8A/wQ3CfwMRRAdE40VjRf5GJEZCBkTF34TOA5hB0n/bvZ97Tvled742VXY8dnU3qrmuvD9+zcHJRGuGAwd7x2LG4cW2w+eCNMBQfxQ+A/2OfVT9dX1TfZ39kz29/XD9QD27Paa+Pf6yP28AIUD2gWOB4sI0wh+CK0HhgYuBb4DRQLFADj/kP3N+/z5PvjJ9t/1xPWv9r/48PsXAOcE8AmuDpsSQRVOFqAVUROsDyMLNwZrATL93/mt97D23vYP+AP6avzy/k8BRQOhBD8FBgXpA+sBJv/L+yb4lvSM8Xzvyu7A73LytvYf/AUCmwcJDJQOwQ5uDOMHzgEn+/70UvDU7dDtI/BP9Jv5Of9nBIsIPQtNDMQL1wnhBlMDrP9k/Ob5gvhe+Hj5ovuM/sgB5QR0ByUJzAlmCRUIFga0AzsB9P4e/e/7kfsf/J399//3AlAGmwllDEEO1A7nDXMLqwf5AvP9Pflu9evy1/EP8jXzy/RX9n/3HvhR+GL4uPiw+X/7Hv5JAZYEkQfiCWMLJAxbDEcMCwyeC8kKOQmjBuICFP6c+B3zVu7/6p/pbupL7cfxP/f//GMC7wZWCnwMaA05DRwMPArDB9MElAE3/v76PPhH9mr1y/Vm9wv6bf0xAQQFmAiwCxkOrg9WEAwQ4A7yDHEKlgecBMABNf8f/ZL7hfrX+Un5lPh198f1k/MZ8c3uO+3q7DDuGPFR9T36Ff8VA6oFkgblBRMExAGz/4f+s/5aAFIDIwcnC6sODBHbEeoQWw6bCkoGHwLC/qP86ftj/Jf93P6I/yT/iv35+gP4afXm8/zz0/Ut+Xj97AG9BUAIEwksCNoFtQJ9/+v8kPu1+0b94P/mAqkFjQcoCFcHPgU9Atj+ovsj+cX3w/ce+Zz7zf4hAv8E3gZfB1sG6wNfADP89/c69HTx8+/W7wzxXvOB9h/66P2eAR4FYAh3C38OjhGgFIkX/RmRG9YbbBoZF9oR6wrJAib6yPF26tHkROH4397gseMF6FTtDfOl+KX9sgGeBF8GEgfuBjoGQQU9BFIDigLYASsBeADF/y7/3P77/qb/1ABZAuQDFQWOBRQFmQNFAWv+cvvD+Lr2l/WA9YL2ifhm+9H+bwLbBbIInwpiC+MKNQmjBqgD4ADx/mD+fv9KAnMGYAtNEHEUJBfyF7IWgxPFDg4JDwOB/QX5FPbp9Hn1efdn+qX9igB5AvMCpwGC/rP5rfMa7brmTeF03Z/bCty63n7j8emC8YD5KAHLB94MERBdEfcQRw/ODAcKVQfvBOYCKQGl/0/+Pf2h/L780f33/xsD9AYBC6UOQBFTEqAROg+LC0EHLAMhAMj+ff83An4GeAsQECoT4RO2EasMPQVR/AXzgurM46DfX94A4B7kCOrg8L730/2HApIF+wYKBy8G5QSTA4ACzgGCAZUB/wG7AsgDJQXJBp4IfgozDH0NHA7ZDYsMJwq7BnQCoP2i+PXzGfCB7X/sNu2J7xrzXfeq+2H/BgJgA30DswKIAZEAWAA0ATkDLQaYCdcMTw+HEEMQkA6zCxgIOgSDAD79hPpC+Ev2Z/Rz8mvwce7F7Lbrj+uJ7L7uI/KO9rX7OAGqBpQLhw8nEjsTvRLXEN4NQgp2BuACxv9F/Vn74fm2+Lf32/Y39v31b/bV92b6PP5BAy8Jiw+wFesajR4PICgf2xt5FpIP3wceAPf42/IF7m7q5Ocm5v3kVuRI5Ajl0+bZ6STukvPQ+WMAuwY/DGsQ4RJ0EzUSbg+VC0EHCwN6/+/8nfuH+4X8Tf5+ALEChQS1BSAGzQXiBJgDKwLNAKD/sP73/Vz9vfz5+/v6xvl8+Fz3uPbj9iL4mvpE/uUCEwg1DZoRjRR5FQ0UVRDDCicEiP3z90b0AvMv9GL3z/t6AGsE2QZPB7sFZwLh/dn4CvQS8GXtQuyw7InugvE69Uf5Pf22AFoD4AQSBeADZgH9/Tb61/ay9H30nvYH+y8BKQjLDvgT1xYGF6sUZxAyCyMGOQIxAGcAzwLzBg4MKBE+FXMXNBdfFEMPnwh1Ad/6zfXY8inybfP39ej4Z/vR/Nj8ivtJ+ar2T/TC8l/yPvM59fT38/q7/eb/MAGEAfAApP/e/ej7Bfps+ED3k/Zr9sP2jfe1+Bn6k/v1/BT+zP4F/7z+Af73/Nb73PpN+l76MPvF/AL/rQF5BA4HFQlFCnQKowkFCPQF6QNeAsABUgIqBCoHBwtVD5cTURcbGq0b4Ru4GlYY9RTiEHEM9Qe3A+z/svwU+gv4iPZ19br0O/Tb83vz/vJS8nHxavBk75vuXu767qPwZvMR9zr7TP+lAsAESgU6BMsBaP6P+rX2MfM68OrtUOx/647rmuy67vLxLPYp+4kA1gWKCi0OaRAVEUAQNA5lC14IqwW7A9AC+gIbBPEFJghkCl8M5A3dDlkPgg+aD+APgBB9EawSuhNEFOgTZRKjD7oL7AaPAf37gvZY8ajskeg15b7iYOFK4aDiYOVj6Vzu4/OH+eT+pwOQB24KFQxhDEUL1QhRBSoB9/xf+QP3WPaS94z6yv6KA+sHGAtyDK0L3ghuBAn/ffmc9Bzxfu8C8J3y+faB/G8C6wcjDHIOgg5VDFMILwPP/Rz52vWF9ED11ffI+3UAMgVtCb4M8A4DEB4Qgg90DisNwws0ClgI/QX4AkX/Cvuo9qDygO/G7cTtk+8Q8933dP0zA3oIvQyVD9EQcRCbDo4LiQfFAnX9zPcO8pzs+OfA5JDj4+Ts6Hbv3/chAQAKORHIFRsXLhWLECYKKwPE/OD3F/WU9Cb2T/ll/a8BgAVICKQJbAm2B9QERwGt/aL6pvgG+M34yfqY/cIA0gNnBkYIYgnbCe8J6QkLCn0KPwsmDOcMJA2GDNAK8AcCBE3/LvoR9VzwXuxR6U/nYeaA5qDnremN7BHw8/Pf93n7fP7IAHECtQP2BJcG6AgHDNYP7xO4F3MaahsMGhYWpw9HB9r9efRK7EfmGeP84sHl3uqR8Qb5cgAwB78MyRAfE7oTuRJiECANdAnsBQoDMQGUACkBrgK5BMoGYQgQCYYImgZSA+X+uPlW9F3vZuvt6DzoX+kl7Cjw5fTS+Xb+dAKcBdYHKAmiCWQJmwh9B0UGKQVQBMoDjANyA0MDvQKhAcn/Mv0Q+sj24PPn8VLxYfIK9fj4mv1HAl0GYAkNC2ALkgoACRgHPQW5A7ACKQISAkkCoALpAvMCjQKPAeD/f/2P+l33XfQe8jTxE/L59M75HgAnB/ENeRPeFo0XWBWFEMQJFQKk+pX02vD+7w7yifZ8/LEC6wcnC84LzwmlBTsAvvpe9g/0VfQq9/772wGZBxcMcw4wDkoLMAao/6j4MPIe7RLqW+n26pnuwfPF+e//iAX5Cc8M1g0eDfsK9AeuBMgBwP/R/u3+vP+zADoB0gA+/5T8Pvng9S7zvPHZ8X/zV/bd+YL93AC9AzcGiQgAC88N8xAjFNwWdxhVGAsWhxEjC54D/PtT9Zjwa+7/7g/y7vap/DUCnwYzCZ4J8wegBFYA3fvy9yP1uvOz88r0i/Zy+Av6Dvtt+1f7JvtA+/b7X/1K/0gBxgIuAx0Ce/+J++X2aPL/7n/tbu7p8ZX3s/5DBjkNpRLbFY4W2hQ5EXAMZwf+AuT/dP64/mgADgMjBioJzAvWDTUP6Q/yD0wP6Q27C74IAQWwABj8mven86fw6O6T7qHv3/H29Hv4APwo/7ABewOFBOYEwAQzBFsDQgLnAEL/TP0O+5/4I/a984Txgu+17STs4uoc6hLqDetS7QXxIfZt/HwDvAqEESsXGxvnHFscgxm0FIUOwAdLAQf8rPit9yL5vPzUAYgH3wz7ED0TYRN+EfcNXglUBGX/+fpQ94T0lPJw8fvwEvGV8WjyefPI9F72Tviq+nb9owAMBHEHfQrYDDMOWA42DeYKqwfmAwQAd/yY+af3u/bH9pr37/h4+uj7//yP/YL95Pzg+8L66/m++ZH6l/zS/wgE0QiUDaYRaRRqFXcUrRFnDS0IkwIj/U34Z/St8UTwOPB38cvzz/b5+aT8OP5J/r/85/l09lTzg/HI8Yr0r/mfAGoI6w8NFvYZLxuuGdEVSRD2CcEDcf6K+jf4Tvdb98n3Cfi397n2P/W888Ly5PKM9N73p/xaAjAIQw3JEDgSaxGiDm0KjQXBAKT8kvml98T2uvZS92n4+/kS/L/+/AGkBWQJyQxID1gQiA+YDIsHtQC3+HfwCemC483geOGN5YbsXvXA/k4H7Q32EVATYxLuD80MwQlCB3UFKQT/AooBhP/i/OT5B/fb9OPzbfSB9uX5Mf7gAm8HZwtsDj8QvhDnD9MNvAr1BuoCFP/f+5v5avg6+M740/n3+v37w/xI/Zr9yv3j/dr9nP0V/UH8N/ss+mr5Pvnk+XX74/31AFUEnAdhCkgMEg2kDAwLfwhSBecBn/7C+3755Pfu9o/2uPZj9434MvpG/Kj+IQFlAxsF6wWSBfADEwE6/cv4TPRP8GXtEey67J/vxfTt+44E4Q3sFp8e+iMwJs0k0B+6F4YNiwJK+C3wS+sx6sjsVPKY+RUBUwcnC+cLhgmGBNz9sfYw8EfrhegH6IHpYuz676/zHfco+vf81v8ZA/MGXAsEEGEUzBepGZAZZhdsEysOYQjXAj7+BftL+dz4S/kR+r36DvsF++T6D/vw+8j9lwAKBIMHNwpfC2EKAgdxAUz6f/IZ6xXlJeGZ31Tg6OK55jHr6O+59LX5CP/LBOcK+BBkFnQajBxaHPYZ5hUIEWEM5QhGB9EHZApzDiYTgBeLGoQb9BnGFUAP+QbB/X70Gexe5eTg+d6a327i1OYC7CTxhvWr+GT6yvow+gr50vfu9qT2FPc6+P35OPzK/poBmgS6B+QK8w2rEMES3ROxEwsS7A6PCmcFEAAt+0j3vfSn8+jzOPU895b59/si/u//RQEdAnwCdAIjArEBSwEUASUBgwEiAugCsANQBJwEbgSwA1kCcgAZ/nn70/h29r30/fN99GP2qPkR/igDUQjYDBsQpBFJESgPoQs7B4MC/P0G+t72pfRm8x/zw/M79Vr34fmC/OX+wwD4AYsCuALbAlcDbgQuBl0Ijgo7DOsMYQypCh0ISQXNAjIBzQCtAZYDDAZrCAoKYgonCVoGTQKM/b34hfRk8aLvRu8l8O3xO/Sw9vT4xPry+2j8J/xK+wL6lfhY9572s/bM9/z5L/0hAWkFdQmpDHMOaQ5iDIIIOAMr/Rf3svGI7erq8OmC6mnsYu8k82j34/tKAFoE0Qd7CjkMAw3sDCIM6gqVCXgI2AffB5MIzwlTC8sM6w1/DnsO8Q0JDewLtwp0CR4IsgY3BcMDfQKTAS4BYwEvAmwD4AQ/BkEHsQd9B7YGkgVVBEEDdwLvAXQBswBW/xn96fno9Wfx1eyp6Efl7uKx4X3hJuJ841zlteeQ6vrt9vFx9jX7+f9oBDsIQQtlDakOJA/zDj0OKQ3aC24K8whsB9EFCwQAApz/1vy/+YD2W/Ob8IXuPO2+7N3sV+3t7X/uIO8W8NDxxPRQ+ZD/QgfKDzsYiR/FJFAnBCdBJNcf0xpCFvoSahGUERkTXxW0F3kZPhrPGTwYyhXiEvkPcA19CxsKCAnaBxgGXwOA/4362fTn7kjpfuTn4LPe69113iHgruLI5QnpA+xF7nbvYu8J7qDrhOgq5RHiqd9L3izeWd+34Qnl+ugq7UDx8/Qa+Kz6vPx1/gYApQGDA8YFiAjMC3sPYBMzF6Yabx1VHzkgGyAeH4UdsxsYGh8ZGBkkGi8c6B7UIV0k7iUKJmkkAyEYHCUWzw/RCdUEYwHE//X/qQFRBC0HYwkbCqQIiwS8/ZD0zumc3lHUQsyDx7XG38lo0C7ZtOJs6wTyo/UO9q/zdu+p6prmYeSk5HnnY+xy8nn4Tf0AABMAiP3c+Pjy/+we6GDlgeXP6CHv0vffAQsMERXhG9sf7CClHx0dvRrxGc8b2iDaKN4ybj3RRmVN70/ZTUVHAT1TMLsiqRVCCjkBwfqX9iL0nPI98VnveOxa6Pfif9xU1QDOKMdxwWy9e7vFuze+hsJCyOfO7tXY3Dvjwegu7Wnwg/LE86f0z/Xx97H7fwGBCYAT6h7sKok2zUDrSGFO/VDeUFhO10nDQ2o8+jOFKgYgdxTgB2j6WOwj3lnQmsOLuL+vsKmypvGmcKoQsZm6x8ZP1eHlIvigC9Ef+zM2R2hYUmambzJzDHC9ZWNUxjxRIAABPOGlw9iqJZlLkDyR65tBrynJw+azBJQfXTTRQM5DdD0gLzsb2AQ/72rdmNH6zJXPW9ho5WT06QLqDvUWXxpHGXYULw3kBPb8gvZC8onwTPE79Nr4l/7dBB0LzhBsFX4YoxmsGKcV8BAoCyAFu/+8+6/5xfnR+0z/cANfB0QKeQuiCrwHHQNq/Xf3LPJX7orsBu2x7x30mvlP/10ECAjOCXwJOQdtA7P+s/kL9Trxmu5f7Z7tT+9U8nL2XPuvAP0F2ArgDtARhxMIFHUTBRL0D3INmgprB80DpP/l+q31TPBC6ynnmOT+44XlCukk7jv0qPrNADEGgQqTDV0P7Q9eD9ENcgtzCBgFswGo/lz8Lfta+/H8yf+LA74H3wtzDx0SnxPlE/wSFRF+DpwL3girBkgFyAT3BGUFdQWABAcCz/359wjxyeky4zLeh9uX21veZOPr6f7wqvch/dwAqgKtAkoBFv+1/Mj61fk8+jD8sP9/BDAKIBCTFccZFxwPHJAZ0hRoDikHCQDs+X/1HPPC8iD0qva++cT8Sf8TAScCtgIKA20DDwQGBUcGswcdCU4KCgsbC1oKuwhVBmIDOAA5/bv6A/kt+DD43fjq+QT73fs6/Pj7Evuc+cb30/UY9O7yqfKC84f1kPhC/BUAcQPIBbMGDAb2A9kAUf0K+qT3kPb/9tb4u/sr/5ECawVVBxwIuwdXBjIEogED/6389Poe+mn6BPwE/10D0wjvDgcVThr5HWgfUR7OGmQV6A5RCIkCPf65++L6QPsW/JH88/vB+eb1v/AP69zlN+IA4b3idue37pv39AB/CRMQ1xNiFMkRnQzOBYf+9vcl88zwNvEz9Cf5I/8RBeYJzgxJDUULFAdgAQn7//Qc8ADt9uvw7JHvRPNj91r7vf5gAVEDxgQIBlUHzQhqCgEMTQ3/DdENkAw0CuYGCgMv//n7Afqs+RX7AP7pASIG7AmpDPQNtQ0eDJcJpwbVA40BEwB3/5z/RwAwARACtgIHA/8CqgIaAmEBjwCw/8r+4f31/AP8DPsV+in5U/iX9/H2Vfa79SD1jfQT9MPzrfPd81L0CvX49RL3T/iv+Tf77/zf/gMBUAOnBeEH0wlSCzgMawzhC6MK0QieBk4EKAJ1AHL/Qf/m/zkB7wKmBPYFkQZNBjMFeAN0AY//KP6G/cj94P6QAHsCMARDBWIFagRvArv/uvzo+bX3a/Yh9rn26vdW+aP6lvsj/Gr8pfwV/eD9Af9IAGIB+QHLAc8APv+K/Un8DPw3/ef/3wOhCHwNvhHVFGsWbRYAFW0SCA8eC+8GqwJ7/oT68fbs85nxE/Bh73HvIPA+8ZryFPSf9UT3Ffka+0L9WP8KAfwB3QGEAAz+zfpi94T07fIs84v19Pnz/78GXQ3CEgQWghYHFNYOqAeV/+L30vFm7jDuNPHn9kr+IAYoDVkSDxUeFdkS8g5aCg4G3AI8ATUBYwITBHQFzwW1BB4Cav5E+nv2z/O68l/zhfWp+Cv8d/8hAvgD9QQqBawEiQPKAX7/zvwG+oz30fUw9dL1n/c3+gn9bf/JALcAG/8l/Ff4YfQL8Qvv5u7W8L30IPo+ACwGBAsMDuUOmQ2eCr8G7wIQAMf+V/+XAQgF5whkDMoOpQ/bDqoMmAlLBmUDXAFnAH4AYwHAAj8EnQW3BoAH9wcbCOIHNgcABikEqgGU/gv7S/eg81fwuu0A7Errm+vb7NnuUPH785v2D/lP+3b9q/8XAtQE2wf+CukNMRBrET4RgA87DK8HRgKB/OX28vET7pjrsOpl65Tt9/Am9a35Ff74ARcFVgfECI8J9Qk1Cn8K6QpsC+ILEQy+C7wKBAm8BjgE5QEuAFr/d/9WAJ8B4gLAAwAEmgOsAmsBBQCW/hr9fvus+Zz3a/Vf89zxUvEb8mH0DfjG/AACIQeeCxgPahGkEvUSkRKbERMQ4Q3gCvsGQwL9/Jv3rvLF7krsbesX7PDtfPA287D1qvcR+fn5i/ry+lL7u/sw/K38Lv22/VL+Ev8HAD0BsQJTBAYGqAcXCTEK3goMC7UK3gmcCA8HYAW4AzsCBgEpAKj/eP+F/7b/9f8vAF4AdgBuADUAt//d/pz99fv++d33zfUV9APz6fIQ9LD22fplAOsGwQ0SFAEZ0hsUHLcZEhXRDtsHHgFu+1f3EfV+9Db1qvZH+Jb5V/qC+kz6B/oR+q768fux/Y//DgG1ASwBV/9d/K746vTJ8fLv4e/G8X71kvpMANkFawplDW4OgA3iChQHvwKU/jT7H/mZ+KP5AfxE/+MCWQY1CSUL/wu3C14KHwg6BQYC7P5X/Kf6GPq8+m383f6YASEE+QW7BisGRwRKAaj98vnI9q/0+/O/9Mn2sfno/Nv/BAIHA70CQAHq/jb8svnU9+T29Pbl9335evur/fb/VgLTBGkHBAp7DI4O+g+FEBIQrA6KDAkKmAelBX4ESATyBDsGxQchCegJygmXCEIG2wKQ/pv5SPTq7trpceUC4tjfK98e4Lri8OaN7EDzlvoDAvII1A4+E/MV9xaAFu4UsBIxEMINkAuhCdgHAwbrA2kBbf4F+2X32vPH8Jfuru1V7qbwevRo+dD+7QMCCHQK8AqACYMGnwKU/hP7ofh89533xPiK+n/8O/56/yEARwAgAPz/KADvAIAC7wQnCO4L5Q+VE4EWOBhmGOEWsBMOD2MJPgNE/Rf4SPQ68hjyxvPn9uX6Cv+cAvwEvQW3BAQCAP4w+Tf0te877DHq1Okx6yrugfLg9+L9EATsCekOdRIPFFgTMhDMCq0Dovul87fss+cw5WjlMugJ7STzn/md/3cE1ge5CWwKbAo+ClIK5Ar1C1ANlg5dD0wPLw4MDB8J0QWbAvD/Gf4v/RH9c/3t/RP+kf1B/DT6uPdM9X7z0PKa8+/1nvk3/iMDxQeSCzAOfQ+QD6YOFA0yC1AJqgdkBocF/QSWBBAEIgOOATf/MvzL+ID14fJt8W3x4fJ99bP41vtB/nT/OP+n/SL7OfiI9ZXzufIb86z0OPdt+uX9LAHQA20FxAXNBMECFwB4/ZP7CPs7/D3/wAMjCYcO+xKtFRQWEBTtD10KTASy/l76zPcX9/b31/kD/M39tf6E/ln9lvvK+Yb4OfgS+ff6i/1IAKQCNQTKBHoEjwN3ApwBVQHNAQIDxATBBpAIzAkjCm0JuAdGBYEC5f/i/c38zvzW/ar/7gE8BC0GbAe6B/AG/wTxAfH9Rvld9Lfv2+tD6UjoGOms68rvEPX6+vUAcwbwCgYOeA84D20NagqgBowCof43+4P4mPZs9eP04vRW9TT2dPcH+c36mPwv/lz///8TALz/M//L/tn+pf9dAQ4ElAecC68PQRPHFdsWRxYXFJkQSQy+B4oDIQDD/XH8Avwz/MT8jv2K/sj/VQErAxcFwAa0B4oHAAYRAwb/Z/rl9Tfy9O9y77nwgPM890L75P6PAeYCyQJZAej+5/vO+AX23vOK8h/yofL+8xX2tvik+53+XgG1A4QFwgZ/B9EHyQdoB5cGMQUUAz0A4Pxn+Wn2iPRF9N/1P/kA/oIDDwn6DbsRABStFNwT1READ9cL0QhQBpAEnANRA2gDiANaA50CNQEv/7f8GPqj96T1UvTE8/XzyfQU9qn3Yvkf+8b8Qf6C/4AAQQHbAW8CJQMYBE4Fqgb0B98IHwl/CO8GiASHAT/+Bvsq+OP1VfSI83rzG/Rc9Sf3ZPno+3j+xAB2Aj0D3gJGAZT+GftX9/Xzn/Hv8EvyzfU9+xICignEEOEWIRsBHUgcDBm2E+oMewVL/ir4vPNY8QLxbPIL9Tj4U/vk/a7/sgAtAXsB/gECA6sE5wZ5CQAMEg5PD3EPXA4dDOQI+gSrAEX8CPgw9O3waO6+7P3rIuwT7aTuoPDR8hH1T/eP+dz7Pf6qAAoDLwXsBiAIxwgBCQwJMwm8Cc8KbwxsDnMQHBL+EsMSPRFsDnsKtAV1ACD7C/aG8dHtIeuh6W/pn+ox7Qnx6/Vv+woBIAYaCogMNw06DOYJuwZGAwIARP0p+6T5gfiA92P2BfVp87nxR/B3763vLvEP9Cv4KP2JAsgHbAwfELUSMRS1FHkUtROaEksR3w9hDtYMQAuaCdQH1AVxA4YAAv33+Kv0kfA17SDruOon7FDv2PM0+cj+/QNhCKkLtg2RDlgOOw1tCyEJiQbVAy8BxP6y/BL76fks+cL4ifhb+Bn4ufdI9+/27PaB9974E/sE/mUByASjB2sJrAklCN0EKgCr+i/1mfCy7RHt+u5S86X5LwH4CPYPORUQGCkYlhXGEGwKWwNk/DP2SPHl7Rfsweul7Hju8vDY8wb3bfoS/v4BMQaUCu8O8BIxFlEYDhlXGFgWdBMxEBMNfwqgCGQHhAadBVEEWgKg/zb8VvhX9Jbwb+0r6/fp5Ont6v3s9e+q8+D3R/x5AA0EpAYDCCAIJQdsBWYDhAEhAHH/ef8UAPwA2QFSAicCPwG2/9T9CfzH+mT6BvuP/Kr+2wCnAqkDrwPEAi0BWv/K/fj8Pv3B/mIBxgRYCHALbA3ZDYgMlwloBYoAnvs198HzhvGQ8LbwofHh8gX0tvTR9G/06vPG85T0zva3+kMAFgeKDsoV8RsyIPwhCSFvHZAXCxClByr/WvfX8Bvsb+nu6IjqB+4Z81L5NQA2B7kNKBP5FsgYZRjhFZURFwwkBoYA8Pva+HX3p/cW+UL7of26/zEBzgF5ATYAKP6B+4v4mfX78vDwlO/h7rTu3e4477XvZfBt8QDzP/Uy+LX7gP8yA2UGwAgDCgwK3giYBngD1/8Z/K/4BfZ69FT0s/WH+If8OwEOBmUKvA3BD1oQrw8aDhwMRAoRCdsItwluC4gNZA9eEP0PEQ7HCqkGggI1/3z9w/0AAK0D5geTC7ENhQ3ECqMFyP4f967vXenM5D7imeF94mXkzeZU6dHrVO4f8Yn03/hA/oQEOQuiEd0WERqoGnMYxRNpDXcGHQBf++f46vgp+/z+dwOVB2MKNgvECTgGJwFy+xD24/GB7yDvjvBC84P2k/nX+/n8+Pwe/O76APrb+dj6Df1KACUEDAhnC7QNng4QDjcMcwlLBk8DBQHQ/+L/NAGEA1kGEQn+CoQLPAoTB1oCvvwo947ywO847/zwovRj+Uf+WwLnBIoFUgS1AXn+fPuU+VH57vo6/q0CgQfaC/UOURDHD4oNFAoIBgMCiP7b+wn66Pgm+Gv3bfYI9UzzePHs7xHvQ++78H7zYvcN/AoB4QUlCooN6A8zEXURvRAcD6IMbAmrBasB1/2l+on41vek+Mb6yv0MAdwDmAXOBVYEVgFA/br4iPRp8fbvjfA787/3j/3pA+4JvA6REe0RqQ8QC9EE7/2N98TyafDl8CL0jPklALUG/QvyDvAO3gs1Buz+RPeU8ALsUOrA6xDwlfZd/mUGwQ27E+IXFRp2Gl8ZRBeYFLERsQ6IC/4H1gP1/nb5wPN07k/q/Ofm5xfqK+5k89D4eP2WALoB2wBb/un6W/eG9AfzMfMC9Sn4IvxRACMEHQfvCHwJ2ghLBywF6ALcAEz/UP7c/c39+/1V/ub+0v9JAXIDTwatCSINFxDgEecRyg9/C2EFLP7Z9nbw8evr6ZTqqe2E8jn4y/1dAmIFrQZ6BlcF9wMEA/cC+gPiBTcIXAqzC8sLggoNCPAE3QGG/3T+6v7PALoD/QbSCX4LfQuYCewF5QAi+1b1NPBR7BnqwOlF627u1vLv9xL9jgHFBEYG6AXaA6AA+vy4+Yz34PbB9975pPxo/5MBygL6AlgCRQE1AIj/df8BAAMBLwIuA7wDtQMhAzECLAFgAAkATgA4AbwCwAQfB64JMQxiDu8PhBDdD9MNcQr0Bc8Amvv19nbziPFj8QLzLvaC+nn/cQTJCOQLSw28DDkKCQa0AO76evUR8UTuX+1f7vDwe/RD+I77x/2j/if+pfym+sv4q/e19xr5yft0/5wDuAdFC+0NjA83ECMQiw+ZDlYNqwtwCX8GzgJ+/tr5VvV98dPuwu2H7iTxX/XM+s4AuQbfC68PyBEGEoIQig2LCQIFZQAf/Hr4p/W386LyTvKd8nPzwPR69pz4Hfvp/d0AxQNiBm0IpgnhCRUJaAc1BQEDaQH6AAwCnwROCGIM7w8KEvQRSQ8PCr4CJPpH8T/pDuN73/reluHu5kHui/aw/qgFrApJDXUNgAsHCNIDs/9j/G36Gvp1+0n+LwKdBvIKkg72EMYR5hB7DukKywbSAqj/zP1y/X7+hQDwAhYFYwZxBhcFZgKs/lj6+vUr8nvvW+4C72DxE/Vy+a79AAHWAvcCkwEw/4j8V/ov+Vz51vpN/UIAJANvBcIG7wb8BRkEjgGx/tr7Zfmr9/72m/ed+fD8TAFBBjoLow/4Et4ULxX1E2gR3w3CCXwFcwH//WD7w/k3+a/5+/rK/LP+RAAcAfoA0P/C/Sz7iPhg9in1KvVm9pX4MfuX/S7/kf+m/qn8Gfqg9+n1efWX9jX59PwyAS0FIwiACQIJxgZIA0j/lvvs+LT3+vdr+XX7dv3q/o3/aP/D/g3+tP0G/iP/+ABQA98FYAigCo0MNA64DzsR0BJpFNEVtBa7FqEVUxP8DwEM8AdVBJgB3//7/nf+tP0L/P34UvQx7iLn+N+u2T3Vb9O71C3ZYeCM6Z/zc/35BWkMWBDBEf0Qpg55CzEIbgWgA/cCZAOhBD4GuwenCLEIuwfaBUsDXABU/V76kff69LPy9fAi8LDwDvN/9/j9EAYJD+EXhR/4JIYn3CYWI7scnhS/Cx8DmvvK9fnxHfDe77XwBfI98/bzAfRq83Pyf/H68EHxkfL49FP4U/yQAJgEBQiSCiEMvgyaDPMLCAsHCgIJ7weuBhAF4gL9/1X8Cvhv8wbvcuta6UTpdOvX7/z1Hf1CBGsKug6jEAUQMg3aCOwDYv8P/IH64/oE/VwALwSmB/YJhAoDCYoFjwDZ+lf1+/CG7mXuovDf9Gz6agD4BVYKDg0FDn4NAgw+CtIIJQhOCAoJ1QkJChMJmAaZAn/9B/gg87nviu7p77bzXvn8/4AG5gtdD2wQ9w5AC8wFUf+W+Gjyf+1y6qbpPOsI74/0EPujAVYHVAsGDTAMAgkSBEn+u/h69Fry0PLR9dz6DAFSB6AMJRBwEXYQkw1nCbUEQACt/Gj6o/lS+jD8zf6bAQcEhwW5BXkE7QGC/tP6kPdV9ZH0c/Xp96L7IgDcBD0JywwwD0MQBBCbDkkMWwkbBswCof/A/EX6Q/jG9tD1XPVd9cb1gvZ+96L42PkV+1r8tf08//sA6wLjBJ0GuwfcB7EGFAQhADf78PUJ8TztHesE6wDt2/At9mz8AQNZCe8OVRM5FmoX2BabFPIQPwwEB9ABMP2b+WT3qvZX9yT5qvt3/ikBgwNvBfgGNwg8CfgJPgrNCWgI6QVcAv39NPmE9HPwcu3N66Pr6Oxq79/y9fZZ+8L/8AOoB6oKtAyJDf0MCgvdB94Dpv/m+0r5UPgw+c37tv8/BKIIIAwrDn4OKQ2QCk8HGASEAe3/Uv9g/4P/HP+x/Rj7jvej8xvwr+3j7ODtcvAc9Dj4Jfxn/8EBNwMFBIQEEAXwBUIH8gi9CjsM9wyIDK4KZgfzAtb9uPhR9EDx8++U8Abz5vak+5IAAQVVCBoKFgpNCAQFuwAe/Of3xvQ984rzn/Uq+an9ggIjBxMLAw7WD5oQeBCvD3wOGQ2yC2QKOgkyCD0HRQY3BQMEpwIxAbj/Vv4l/TT8hfsQ+8b6lvpw+kj6Gfrh+aP5YPkT+a34Gfg/9xL2mPTv8knx4O/v7qbuJe+A8MLy4/XL+UL+7gJZB/wKVg0KDvUMOAo5Bo8B9Pwb+Z723fXz9q/5nv0eAn4GHAqDDIQNQA0cDKcKdgn8CHIJzQrEDOkOxBDwES0SZRGvD0INZgprB5oELAJCAOT++v1c/dX8NfxW+yj6qPjl9vb09vID8TLvlO0y7BTrRurY6eDpc+ql64DtB/Av89323vrs/q8C0AUFCC8JZQnzCFEIAghwCNQJHQz6DucRUBSzFb4VWhSrEQcO4Qm4BQgCN/+G/Qv9pP33/oMAuAESAjsBJP8Q/Iv4UvUq86ryEfQu9177rP8IA40EtAN4AFb7M/Um70PqYef35g/pSu388kv5X/9+BDcIXwoYC70KzQnMCCwIOggMCXsKLwyoDWMO9A0uDC4JXwVdAdr9a/t1+hP7Ev0AAD8DIwYRCJgIjwcUBZMBrv0d+o73fvYg90/5nvxoAAAExwZYCJQIoAfXBa0DkAHP/4n+tf0o/bD8LPyX+xT72/oo+xn8l/1K/6UACgH3/zn9CvkQ9D/vpOsk6kbrC+/r9Ov71gJ6COULmAyhCpAGWwEo/Av41PXp9Tf4SPxcAZ4GSQvJDs0QPxE6EPYNvArYBp4CYv5++lD3O/WZ9Kz1h/j8/JACiAgHDjsShRSbFIsSrg6TCd0DLf4P+fn0SPI88frxgPSX+NP9lQMcCaINeBAwEa0PKww8B6ABJvx39wT09vEz8Xnxc/LL8zz1kPaj92X41vgJ+SL5UfnH+bP6MPxC/s0AlwNUBq4IWQocC9cKjQlbB34ESAEa/lX7Tvk/+Dr4Jfm/+rD8n/46AFQB2QHUAWQBsgDr/zv/zv7I/kP/SADJAZcDcAUIBx4IjwhYCJUHbAYEBXQDxwEFADr+hPwR+xz63fl8+gn8cv5/AdcEAQhvCpYLCAuMCDUEbf7m94bxP+zh6PPnmumR7UTz5/mjAL4GqgsYD/gQcBHNEHYP1A1DDAMLKgqpCUoJxQjLBx8GqAN6ANz8O/kb9vjzL/Pf8+b14/hI/Hr/8AFVA4wDswIVARL/CP1E+/j5NPnp+O74CvkB+aD4x/dy9rb0vfLC8A3v7O2w7Z3u3/B69Eb56f7jBKMKlQ9CE2YV+hU1FX8TVhEwD14N+wvpCuIJkwjBBmEEqgEP/yH9cfxl/RUAPgRECUsOXhKgFHgUqxFpDEgFJf0D9ejtuOgV5kvmRemP7mb13Pz0A9MJ1w2mDzMPqgxmCNoCkPwa9hXwGOuh5wLmTuZP6Jjrlu+x82n3afqJ/Mz9Vv5f/jH+G/5x/n3/cwFnBEIIwQx6EegVfBmqGwYcVRqkFk0R8ApVBEz+gvll9hf1c/Ud95r5ZfwF/xkBawLqArQCBwIxAX0AHwAqAI8AJAGxAf0B2QEqAev/Lv4a/Ob50fcc9v/0ofQQ9T/2B/gt+mj8df4dAEsBBgJzAssCRgMRBDcFngYICB0JggnpCC0HYgTWAA79p/k09xj2bPbx9yH6Ufzj/W/+4/2J/Oz6svlp+WH6lfy1/zYDgwYWCaEKHAu6CtgJ2wgQCJwHcwdmBzgHsAarBRsECwKg/xH9rfrO+Mb3zff0+BL7zf2kAA4DjQTMBLEDYQFB/uL66Pfu9WL1cvb9+JT8kwA7BNMGyQfNBt0DSP+i+a7zOO706VnnlOaK5+zpWe188SP2QvvqACsH9w0OFfcbCyKQJt8ohChlJcsfYRgVEO8H3gCS+1z4Mve491v5dPtn/b7+NP+0/lT9Q/u8+Pb1H/NS8KbtLusK6XXny+Z95/rpkO5I9c79aQcSEY0Zqx97In4hyBz/FEUL/gCT9zHwn+si6oDrIO8r9MH5Gf+gAwIHHgn8CbsJhgiNBgQEIQEh/j77sPim9kH1kPSZ9Fb1wfbX+JP77P7GAu4GEQvJDqURRRNmE/4RPQ+UC54HBwRoASUATwCfAYEDLgXbBeUE9wEr/QT3YfBO6s7lqeM/5IDn7ey38+f6iwHgBmAK2QtfC0cJEAZSAqf+kvt3+Yv42fhD+pD8ev+5AhMGYQmIDHgPGhJEFLUVHBYkFY8STA6MCMkBwvpb9IHv++w/7Vnw3PXx/HcENAsJECMSHRESDZAGe/7i9dLtNOey4rDgTeFn5KDpZ/D+95T/VQaNC7kOnQ9LDh8LtAbPAUD9wvnd98v3dfl4/DsAEwRbB5AJaArYCRoInAXuAp8AIv+1/lj/0AC0AoYEzAUyBpsFLQRFAmgAIv/g/t7/DgIgBYkImgukDRAOfwzhCIIDCf1b9oDwZ+y86r3rKu9S9Dr60f8sBLgGUAc6BhQEmwGJ/1n+Qf4g/5IAFAIiA1oDkQLYAHD+rvvu+Hn2fvQP8y/y2fET8uryefTY9hf6Lv72AjIIhw2OEt4WExrZG/YbUxoBFz0SZwz5BXb/XPka9AjwZe1V7Nfsze7y8en1P/p9/joCJQUTBwQIHwikB94GCgZJBZgEzgOvAgABov6g+0T4CPV/8jDxcvFM83L2VPo7/nIBbQPhA9gCswAQ/qz7M/oa+nz7EP46ATAEJwaKBiEFGwIL/sH5KfYV9B70gvYe+28BrgjsDzoW1hpAHU8dKhs4FwwSRwyKBl8BMf1H+sX4rPjd+Rf8/P4TAtoEzwaJB8YGdAS5AOv7hvYj8VnssOiJ5hDmNee26SjtDfHy9IL4mvtG/rIAFQOSBSgIrgrXDEYOog6lDTMLYgd6Avr8gPe78krvou357T7wG/QF+VX+ZQOqB8QKiAz/DGAMAwtUCcQHsQZZBssG4wdXCcYK0ws0DMYLgwqICAcGQQOCABL+MvwT+8r6Svtn/NT9Mv8VABwA+v6I/OP4avTD78LrQen06DrrA/DL9rb+rgagDaMSHBXSFPER/Ay6BhQA+/lB9YPyEvLm86D3l/z3AeUGqArNDDgNKAwaCq8HgQUABGEDkQNLBCMFowVmBSYEyQFr/k762vWJ8dntPesN6oHqpOxS8ED1+/r6AK0GfwvvDpgQQBDhDbQJLQTx/cT3cfKo7uXsWe3o7zD0nvmE/z4FRAo9DgYRrBJjE3ATGROTEvkRQhFIENAOngyGCYIFuQB++0X2j/HY7X3rrOpZ60XtBPAe8yf21PgF+8b8O/6P/+AAMgJuA2kE9ATmBC8E3gIkAVL/yP3p/Pv8IP5LAEgDxQZlCsENdxAmEnkSMxFFDtYJTQRE/nL4kPMs8Jfuze548APztPXW9+T4o/g39xf19fKW8azxsPPL98r9IgUFDX4UmBqIHs8fTx5XGpEU5w1YB8gB1v29+1H7Dfw3/Q3+9/2h/Az6hPaL8rnupevM6Yfp/+ow7uPysfgM/0sFxgrpDlYR8hHtEK8OvguWCI4FxQIjAG/9Zfre9uDyru7C6r7nS+b45h3qxu+l9xcBPQsMFXodoCPWJsYmeCNTHQ0VmgsGAlP5TPJ17ffqreox7PbuZfLx9TH56vsM/rL/DAFVArwDWwUtBxQJ1woxDNsMmgxMC/MIugXyAQX+aPqG96j16PQt9TT2oPcV+Uj6FPt7+6T7y/sr/PH8Kf6+/34BMgOkBK4FPgZRBukFAgWXA6MBMv9p/JX5Hfd69Rb1Nvbf+NP8lgGLBhILoA7XEIgRrhBtDgwL7gaOAnD+BPuZ+Ej36/Yx96z3+ffW9z/3Zvas9X71Nvb696369P1LASwELAYWB/YGCAakBCkD5QEIAaEAoADdAB0BJAG+AM7/UP5t/G76tfis97L3CPnE+8b/ugQfClgPxxPqFnMYWBjKFigU4hBZDdAJWQbbAiP/8Pod9q7w5Oo85WHgC93c2zvdOeGK54nvVvj1AIUIYQ46Eh8UZhSMEw0SRxBqDn4MdQpCCOEFaAP2ALn+1/x4+7r6t/p7+/z8FP9yAagDMAWUBYoEDQJo/if6+fWK8lvwse+B8IHyOPUi+Mz67Pxq/lf/2v8lAGEApwABAW0B5QFgAtgCTgPKA1kEAQXDBZIGVwf8B3UIyAgUCYYJUgqdC20NnQ/WEZcTRBRLE0IQCwvlA237h/I66oHjIN+H3cLegeIm6Ofu6vVq/NABwAUdCPoIkwg1BzwFAwPpAEH/R/4T/o7+b/9MALgAXAAW/wT9hvok+Hb2APYa99/5Kv6eA7YJ1A9YFa8ZahxHHT0cfRlrFZAQgAvEBsMCs/+S/TP8T/uW+rv5g/jE9mf0b/H57UTqruas47vhRuGP4qDlROoT8ID29fznAvYH4wuVDgsQVRCJD84NXQuCCJkF/QL8AMj/af/A/5EAkAFvAvIC9gJ7AqABpQDb/5v/MwDXAYwEIggxDCgQXhMyFS4VGxMTD4IJEQOO/Mf2c/IR8N3vyfF49VH6i/9KBMIHUAmjCMYFKAGP++71QvFe7sDtfu8+80r4tv2PAgsGpQc4B/sEcgFU/Wv5cvb39EP1Tfe9+v/+WwMcB6IJeQptCYQGCQJ//Jf2HfHe7I/qrepo7Z3y0flBAvsK/RJdGW4d2h6vHVUafBXxD4AKzAU5AuX/qP4s/v39q/3Z/FX7Hvli9nnz0PDf7hXuyO4g8RL1VvpvALQGYwy9ECQTNxPpEIcMrAYnANX5dvSY8HruFu4y73vxmvRF+D/8TAAsBJcHPwrkC2IMvAsgCt8HWAXlAsoAK/8K/lH93PyA/Bn8jPvN+tr5w/ie9472tvU79T713PUv90b5J/zD/+4DYQi2DHcQLxOFFFgUyhJDEFkNrgrDCNYHzQdCCJgIKAhrBhsDUv6C+Gry7uzu6Bjnw+ff6vbvPPa5/HoCvAYSCXQJOAjuBT0DsgCm/i79Kvxb+4X6hvll+E33ffY39qb20/el+e77df4MAZYDCwZuCMMK/Qz2DmYQ7RAnEMUNrgkUBHv9q/aX8C7sLer36nvuNPRG+6QCUAmBDskRFROjEucQZQ6YC+MIiwa8BJgDNwOkA9gEqQbFCK4KwAtKC6oIeAOy+87xyuYO3DbTw83TzNjQftmw5cXzxgHKDUIWOxqJGcsUTQ3GBAj9oPeZ9U73Z/z8A8MMURVUHMUgCCIBIA0b9BPGC7QD3fwb+OX1OPag+FL8WQDLA/MFbQY2BaACOf+m+4H4OPb59LH0HfXc9ZL2/Pb19nv2pfWX9IDzlfIL8g/yvfIZ9Aj2Uvi1+uz8xv4uAC0B5wGPAl0DgQQYBiQIiwoVDXwPdhHFEkMT5RK3EdgPcQ21CtgHDwWKAm4Az/6m/dn8P/ys+wL7Pfp7+fH44fh7+cj6pvzC/rMAFAKYAiYC2gD+/vT8Jfvn+W/5zPnh+nL8Kv6u/6oA7QBkACz/fv2t+w365vhm+Jn4cPnF+mT8G/67/x4BJwK8As0CVAJnATgAHf95/rH+AgB2AtMFpwlZDUQQ3hHLEfAPgAzpB8cCxv2B+W32xfSJ9IH1Wfev+S78kP6lAFECfQMWBAcEQwPCAZX/5fz9+Ub3MvUr9H/0RfZc+Wn95AEsBpwJqAvvC1EK9AZAAtj8fvf/8hDwMO+P8AL0E/kP/y4FtAoND+ERGBPWEmIRFQ9CDDEJHAYvA5UAdv7w/Br89Ptn/EP9Sv49/9//AAB+/0D+Q/yd+YX2VPN+8IXu3O3L7lzxU/U2+mr/UARrCHILYA1kDsoO3g7HDnwOxA1LDMYJEAZHAdX7WPaP8SruquxA7cPvuvNt+BD98ACZA+oEGAWSBOEDeAOXAz8EMgUPBnQGHgYABUMDPQFQ/9H99/zJ/Cr92v2R/hH/N/8C/5n+Nf4W/nH+YP/cAMIC1ATHBlAILQkxCUUIawa/A3IAxvwG+ZD1xfIE8Z7wvfFb9Db40/yQAcQF1whoCl4K8wihBgkE0QGBAGsAogH7AxwHiwrADSsQSxG8EEUO8QkNBCr9CPZ37zjq2Oae5YHmL+kk7b7xY/aO+uf9QgClAToCSQInAigCjgJ7A+gEpQZjCMMJbgomCtEIfgZdA7X/1fsR+Lr0IPKL8DrwV/Hv8+73HP0dA38Jtw8zFWQZ0RsqHFUaeBb7EHsKvAON/ab4jfV+9GX15Pdn+zz/rwIoBTgGrgWaA0cAM/zu9wz0DvFQ7wnvQ/Dj8qr2OfsYAMEEpQhBCywMMAtRCNgDS/5f+OPype5Q7FXs1u6Z8w/6YwGgCM4OHRMDFU4UKBEJDKEFv/4u+Kfyue6/7Nzs8+618qf3OP3RAu8HJQwuD+QQRRFiEGYOiQsWCGUE1wDK/ZD7ZPpi+oH7jf0xAAEDiAVgB0UIIwgWB2MFZgN+Afn/A/+k/rj+/P4b/77+p/23+wb53PWt8gjwf+6D7kzwwvN7+Mn92gLvBnsJRQpxCW0H2ARbAoQAsf/3/zIBCwMRBc0G2wf7BxUHQQW/AvL/Sv05+xf6EPoU+9P8xv5PANsACQDN/Xf6rvZM8zLxFvFX8+f3S/6rBQMNQhODFy8ZFxh4FO0OUwijAcn7dvcU9av07fVI+AP7Zv3d/hr/Gf4g/Kr5S/eO9eP0hPV093n6L/4ZAr0FtAjACsgL2wsZC6sJuAdhBcwCHwCJ/Tr7Zfk4+NT3RviA+Vz7k/3M/6YBzAIFA0UCsgCa/mX8gvpT+Rn58fnP+4b+0AFYBb0InQufDXgO/g0qDCgJTwUcAR391Pmt9+D2bfcc+Yr7PP61AI8CiQOSA8kCeAH7/6v+0f2R/e39wf7Q/84AbgFvAbIASv9z/Y37//kX+ff4ifmN+rD7o/w5/Wr9Vf0w/TL9hf01/jT/XwCKAZMCZwMQBK0EaAVpBsQHbQk0C8gMxA3IDZAMCwpjBvkBV/0R+bL1mfPs8pLzNfVX92/5//q7+5D7r/p/+YH4Nvj++P/6HP77ARoG4gnKDGoOjg44DZ4KHwczA1T/8Ptd+c/3UvfT9x/58voG/SL/JQEMA+IEuQaVCGgKBAwkDXQNogxzCtYG8QEq/CH2nvBz7FTqsOqX7ajyJPkEADUGvAryDJsM8QmRBV0ATfs898n0M/RZ9cH3vPqQ/af/tQDGADMAhv9R/wQA0wGYBOMHCgtWDSYOGw0qCqQFKwCX+s71ofKm8RbzxPYf/EoCSwgxDUUQKRHhD9IMoAgSBN//j/xp+nL5d/kk+hf79ft2/Hj8APw8+3j6B/oq+gD7dPxE/g8AcQEXAtkBywA0/4X9QPzS+3/8Rf7mAO4DzQb4CP4JoQncB+wEQwF5/S767vcT9633gvkZ/NX+FgFiAnYCWQFg/xL9GfsS+nX6c/zy/4sEnglpDiQSJxQBFJIRBg3TBp7/Jvgu8WrraueN5fflkegL7enyk/ljAMAGIwwkEH0SDxPjES4PTQu8BgUCsv0y+tX3xfYH93/4+/o+/gUCFwYvCgMONBFZEwgU7hLnDwwLtwR+/SD2bu8x6gnnU+YU6O3rMPH39lD8bwDWAmYDZgJjABH+Gfz7+vT6+PvB/eP/5wFoAxkE1QOgAqYAOP65+5T5JPiq90X48vmX/AUAAAQ/CG8MNRA1EyQV0xU8FYIT7xDjDcMK6gedBf8DGQPSAvoCUwOZA5EDEgMIAnQAZ/75+0/5k/b687vxDvAZ7+buV+8k8O/wVvEW8Rrwi+7C7Dnra+q96mrsfO/P8xr5/v4UBfwKXRDrFGYYoBqAGwgbZBngFugT8xBuDqQMrwtvC5ILrAtUCz0KUgi0BbICt/8j/Tn7Cfps+RT5pPjJ91L2P/S88Rnvu+wE60zqzeqd7KTvn/Mj+Kn8pwCoA1kFoAWdBLECYwBO/vz8z/zm/RkABgMdBsYIgQoEC0gKighBBvwDSQKaAScC7gOnBtgJ5wwwDykQdQ/6DOkItAMF/pz4M/RY8VXwI/F088P2b/rZ/XYA7AEQAvkA7P5W/LD5bffh9Tr1dvVy9v335/kR/G7+9wCcAz8GswjLCmsMiQ01DoYOjw5XDtIN5gxxC1YJiQYVAyP/9fri9kbzePC77j3uEO8o8WD0dPgI/aMBwgXfCIkKdwqYCBoFaAAe++31jPGb7ortje6K8SH2svt2AaIGgwqjDNYMRgtkCNQERAFO/lv8nfsO/IP9uP9iAjoF/AdoCkMMWw2KDb8MDQupCO0FSwM1AQMA3P+iAAMCgwOhBPMEQgSOAgsAGf0m+qT34/UL9Qj1kvU89o72I/bF9H3yme+Z7CDq1Og96bPrRPC29oj+AgdND5AWChwxH8Efvx19GYUTjAxVBZ3+Avn39LnyS/J/8/71Xvks/f4AewRbB3AJqAoLC7wK8QnqCOQHDQd+Bi0G9gWdBdoEcAM5ATf+lfqs9u/y4u8C7q/tIe9T8v32lPxYAm4HAwtvDFoLyAchAif71PM/7WvoH+bE5lvqcvBB+MYA7Ai2D1wUaRbGFbwS5g0UCCsC+/we+e32a/ZZ90X5qfsJ/gUAdAFUAsUC9AIIAxkDMANPA3kDuwMlBMsEtgXbBhkIMwnjCeYJEglmBw0FVwKg/0D9d/tn+hn6fvp/+/783v7/AEADdwVyB/cIzQm7CZgITQbkAof+gvlI9GTva+vi6Czoc+md7Ebxz/Zt/EsBsAQiBoAFEgN//6z7k/gD93P35fnf/Y4C+wZFCtgLjwu5CfsGJQT7AQgBhAFIA+gFzwhiCx4NsQ38DBoLUwgOBcAB0f6N/BT7Xfo6+mL6hvpb+qr5XfiD9lT0KfJ08KLvEfDw8Tz1s/nh/isE8AidDMoOSw84DucL3gi5BRcDfQE9AWkCzAT2B00LJA7aD/EPIg5sChcFrv7t96/x0OwN6uXpguyn8a74mAA1CFAO6RFlEqwPLwrSAsL6NvND7arpwehw6kHuf/Na+Qv/8QOiB+4J2wqaCnkJzgfvBSQEogKLAe0AxQADAYABBwJUAiYCTwHE/6D9IfuY+FH2ifRh89zy6PJm8zj0SfWZ9j/4Xvof/ZsA0wScCaEOXxM5F44Z1xnFF1YT4AwDBaD8rvQm7t/pcegk6unuVPar//cJKBQtHRokRChQKTknTCIRGz4SnAj0/v/1X+6W6Afl7eNW5Rfpwu6l9dT8SgMTCHUKFAoJB9ABOfsx9KbtV+i65Pfi6eIy5FPmxegT6+nsIO7C7gbvRe/s72XxAvTp9wb9BANmCZEP8hQYGcMb8BzPHLsbIxp4GBMXKRbAFagVjxUTFeATyhHlDnwLDQgeBSIDUAKVAosDlQQABTIE1gH1/fj4lfOo7gbrUenV6Xvs0fAk9qH7fQAWBAcGLwazBOwBWv6I+gP3P/SO8hjy3PKz9Fv3ePqm/XoAmwLCA9AD0AL5AKX+O/wi+qv4BfhB+FH5FPtZ/er/iAL2BPcGUwjjCJUIcgeeBVUD4gCR/qH8Oftf+v758PkO+kL6hfrl+n37Zvyv/Vb/QQFHAysFswavBwkIygceB0sGpwWIBS4Gswf/CcIMfw+jEaQSHxL5D2YM5QcnA+r+xvsT+tT5tfoq/I/9Vf4f/tz8wPo4+M71/vMb8zfzIvSE9fj2MfgK+Yb5xvny+Sn6fPro+mP73/tS/Lf8Df1Y/aP9BP6g/qH/MgFtA0YGhQnCDHcPGBEtEXEP5AvPBsUAi/r29Mrwk+6R7rHwmfS++YH/RwWSCv8OThJQFO0UGhTfEV8O1AmUBAn/ofnJ9OHwMe7i7P3sau7v8Dj03fdu+4X+zwAdAmQCuAFDAEL++Pu5+eD3zfbW9jT4+Pr9/ucDLAkkDiMSlxQgFaUTYRDdC9IGCgIw/rL7r/oC+1H8Lv4sAPYBTQMFBAAELAOEASP/P/w8+Zb20/Rn9Jb1YPh9/GQBZgbHCuYNUg/fDqwMGwm+BEEAUvyC+TP4h/ha+kj9xAAuBOwGgAiYCBQHCgS5/4T65PRb72Tqaua+45Hi/eIE5Zfoke2w85D6qgFhCBMOOxKJFPQUtRM9ERIOtgqJB8IEcAKJAP/+yP3o/Gv8Wvyx/Fn9Lf4B/7L/NQChACoBFgKpAw4GQQkEDdwQKBQ/FpQW2xQjEd8L0wX3/z77ZPjB9zX5Mvze/0UDkwU2BvYE+gGy/bT4oPP/7jHrcejX5mvmLucf6TvscvCd9Xz7qgGwBwANGBGMExkUsRJ+D9kKPwVI/4/5qPQV8TPvNO8W8aL0Z/nH/gYEaghOC00MTAuGCHsE1P85+zT3IfQm8kfxc/Gd8sT07/cn/F8BaAfcDSkUoRmTHXEf6R74G+oWURDwCJsBIvss9i7zVvKJ82j2X/q4/r0C2AWkB/4H+gbYBO8Bmv41+xL4ePWc85jycPIP81H0EfYn+HD6w/zt/rMA2gE2Ar0BjgDy/k/9F/yx+2H8Pf4rAeIE9QjkDC0QWhIPExoSeA9cCysGbAC2+pD1YPFf7pPs2usD7NvsPO4Z8HTyUfWq+Fn8DwBeA8UF0AY9BhYEwQD2/Jz5o/fL93v6qf/WBikPkBf0HmskVSdwJ9Qk5h9BGZoRqAkNAk37v/WO8bnuEu1K7ATs6uvC63zrMush65Lrw+zS7rbxQ/U1+T79FgGFBFwHfgnZCmkLMgtFCrsItAZTBLwBE/9//Cf6NfjM9gf27fV29oj3C/ns+ib9uv+mAtgFIQk8DNAOhRAaEW8Qlw7WC50IeQX6AqABvAFnA3QGcAqvDlsSnRS+FEwSNQ3QBdb8S/NU6gvjS96N3NbdvOGB5zju7PTE+iH/qAFQAlgBQP+t/Ff65vjV+Fv6Xf1vAe8FIwpeDSsPWQ8IDpMLfghPBXUCMgCV/nz9sfwA/Ev7l/oK+uH5Wfqd+7X9gAC8Aw0HEApxDPUNgg4bDtsM7Qp/CMQF7wI0AMz96fu1+kb6nfqk+zf9LP9VAYQDiAUmBx4IKwgNB5gEvgCk+5z1Ku/06Krj8t9L3v3eCuI35xDu//Vd/oAGyw20E88X2xnKGcwXShTXDxgLqAb9AlUAt/72/c397/0o/mb+w/52/70AxgKRBeUIVQxQD0ARoREcEJgMPQd3AOf4TfF26iLl7eE64SHjZed17X70k/vWAawGywlNC5kLQQvWCsUKOwseDBkNtA1zDfgLGAntBNT/X/o49QDxNe4X7artte/X8pX2dPoG/voAIANjBMgEbQSEA08CIwFbAEsALAEMA8AF5wj4C1cOeA/6DrMMwgiKA6f93Pf38rLvlO7b723z3/h+/2sGvAyaEWcU0BTdEu8OpgnKAx/+Qvma9UfzMPIX8rHyuvMF9Xz2F/jP+Zj7Uv3a/gkA0QA1AUwBOQEcAQUB8gDPAIIA9v8q/zv+Zv33/Dz9bP6TAIwD+wZhCjIN7g4+DwUOZwu6B3MDC//e+ij3A/Rw8XLvFe517bXt7+4m8T/0APgX/CoA5AP6BjYJewrCChsKrwi+BpwEqgJJAccATwHiAlgFagjDCwkP5RELFDkVNhXbExsRCw3rByoCWvwg9xnzvvBS8M3x4fT/+G79ZQEyBFIFjAQCAif+pflE9bnxgO/M7nXvDvEA86/0p/W09ej0lPMr8ijx8PDG8brzsvZ0+rL+HwN+B58LXg+VEhQVnhb1FukVaRORD7EKSQX8/3P7RfjU9jL3I/ke/HH/ZQJuBD4F1QR0A4cBjP/0/Rr9OP1r/qoA1gOoB74Lmw+4EpcU0xQ4E80P1wrRBFz+IPi98qnuLOxa6x/sRu6D8Xz1y/kF/sEBogRnBuwGOQZ4BPEBAf8G/F/5WPcf9sT1MfYy94D4zfnT+mX7ePsk+6L6RPpg+j/7Cf22/xIDwQZMCjkNIA+2D9kOlwwpCfcEiwCE/Hv58fcp+CD6fv2jAcgFHwkBCwgLKAmoBRQBJPyW9xP0DvK38fXyc/W3+D78l/92AsAEhAb3B1UJ0wqIDGAOIhByEeMRExG/DtsKoAWH/zr5efP+7lbszOtY7Zrw7/SH+Y/9UwBeAY8AHf6P+qv2S/M68Qnx9fLd9kj8fgKyCBkODxImFDUUVhLoDoAKzwWMAVD+f/w9/Gz9tP+bApcFIwjRCVYKkwmSB4AEpABW/Oz3u/ML8BftDOsL6inqbOvO7Tbxc/U7+i7/1AO0B1sKewv9ChMJMwYDAzgAZ/7h/av+ewDaAj8FMwdpCMsIcgiWB3cGRgUfBAUD9QHrAO//Ff93/i3+QP6p/lD/EwDWAHwB9wFCAmcCeQKVAt4CdwN1BNcFfwczCasKogvnC2ILHgo2CNQFHAMvACH9//nb9szz8vB97qPsl+uB62zsQ+7H8JzzVvaQ+P75gvou+kj5Nvhn9zr36fd7+cn7h/5XAd4D0wUMB4oHbwf+BoUGTQaIBkMHaAi/CQUL9QteDC8MeAttClEJZAjTB64H5wdcCOMIVAmPCXsJBQkgCMgGCAX2ArQAa/4+/E/6s/hw93z2vvUZ9XL0t/Pk8gLyIPFQ8KTvLu8G70zvLfDa8Xj0Dvh3/FwBQgafCvkNAhCoEBcQow6yDKEKsggJB7gFwgQuBAAEPwToBOgFFgcuCNwIygi1B4QFWAKM/qP6MPez9Hjzh/Oj9F32Mfiq+YH6q/pU+tP5ifnE+ab6FvzF/UH/EgDe/3z+CPzd+In1rfLn8KvwNfJ29R36nf9CBVUKMg5tEOYQ0w+zDTULEwntByYI1wnHDHUQMBQwF7oYRBiQFb8QTwoMA/H7/PUH8p/w6vGY9fH67ABpBloK/Qv/CoMHHQKq+yD1Zu8n68LoQOhj6bXroe6E8crzA/Xw9JfzPfFf7prrlung6Nfpkuzg8E32PPwDAhgHHQv3DckP4RCcEUsSHRMYFB8VABaIFpEWChb8FIITvRHPD80NxAu3CaYHlwWVA60B7f9S/s38PPt3+WX3D/Wo8pbwXu+E73HxTPXm+roB/Qi3D/MU5RcQGFQV+Q+aCA0ARPcn73zo0+N54XnhnuOF56fscvJV+NX9jgI1BpMIggnyCPYGxwPM/477rffC9EbzfvNn9bX43PwfAbUE7AZUB9gFzQLi/v76FPjx9hH4h/v4ALEHzA5ZFYwa1x34Hu8d9RpfFpMQ9wnxAuf7PPVc77PqpueJ5pHnvOrQ71H2mP3aBFALSRBJEx8U7BIZEEAMDQgXBMsAXf7H/N77Y/se++H6mfpA+uD5ivlX+V75r/lL+iD7CPza/HL9wv3Y/dz9AP53/lv/pwAyArMD0gQ+BbgEIwOMACb9RflZ9d3xUe8l7rTuLPGG9Xb7cAKuCUIQQhXoF8QX0hSID8sIwQGi+3b35PUS9576tP83BfwJ+Qx3DS0LSwZw/4/3zu9Z6TXlGuRW5sDrufNC/RoH9A+iFkYaexpbF34R1wmMAcX5evNY76/tce5F8aD14/puALcFUQryDXQQ0xEnEpcRVRCLDlsM1gkIB/sDxACJ/Xr61vfY9a70b/QU9Xb2Vfhh+kj8xv2z/gT/yf4n/kT9SPxR+3P6v/k5+eL4r/iQ+HP4Tfgh+AX4Ivii+Kn5P/tM/Zf/1QG1A/UEcwUxBV0ERANJAskBDgI0AyAFgwfpCc8LxAyDDAMLdQg6BcoBnv4U/Gz6xvkj+nT7nP1sAKkD/QYKCnAM4A0wDlkNgAvrCPYFCgOIALv+x/2h/Q/+tv4p/wX/Av4K/Db5z/VB8gPvhOwZ6/HqFOxi7pvxa/V1+WT99gACBHkGWQiuCYQK5graCmIKhAlHCMEGFQV4AyQCUAEVAWcBDAKjArYC2QHF/3L8Jfhx8x/vC+z76mjsYfB39sf9JgVdC2oPsxAtD1MLCgZxAKf7lPjI92X5Iv1aAjoI2g1yEnEVjhbEFUwThA/gCtgF3gBR/HT4cvVY8xvypvHk8cryWvSf9p75Qf1QAWwFGQnYC0ANGg1rC3QIngRoAE78t/js9RP0NPNB8yD0sfXT92L6Mv0KAKwC1QRMBuwGqgabBeYDuwFG/578zvnT9qfzVfAE7QPqxufX5sPn9eqX8Hv4DgJnDGIW2B7RJLwngCd+JHQfSRnfEuQMwQeOAyoAS/2e+ub3CPUd8mrvWu1p7AXtce+s82D53/85BmILZw6nDgIM7AZdAKf5KvQW8SPxbvR2+jICTQpeESwW6RdNFqARpApvAjj6GfPm7RPrqOpW7I3vmPPA91/78f0r/wD/qv2g+4T5Bvi/9wz5/PtCAEMFMQo1DpkQ5hABDyYL5QUEAGD6wvXF8rvxqfJJ9SH5m/0cAh8GOwksC9YLOAt0Cb0GWgOg/+b7kPgH9rb0/vQk9zf7AQEECH0PhRYqHJofRSDwHcIYPxE0CJb+YfV37YTn7OPE4tvjxObt6rzvovQz+TX9nQCHAx0GhwjWCv0MyQ7qD/8Prg7ACzQHTAGQ+r3zre0y6fjmZOeG6hDwW/d5/w==" type="audio/x-wav" />
Your browser does not support the audio element.
</audio>
We can enhance this by increasing the frequency; this is the “audio” equivalent of the enhanced visuals that NASA employs on telescope images with “false color”.
The code below will shift the data up by 400 Hz. The resulting sound file will be noticibly more high-pitched, and the signal will be easier to hear.
# function that shifts frequency of a band-passed signal
def reqshift(data,fshift=100,sample_rate=4096):
"""Frequency shift the signal by constant
"""
x = np.fft.rfft(data)
T = len(data)/float(sample_rate)
df = 1.0/T
nbins = int(fshift/df)
# print T,df,nbins,x.real.shape
y = np.roll(x.real,nbins) + 1j*np.roll(x.imag,nbins)
y[0:nbins]=0.
z = np.fft.irfft(y)
return z
# parameters for frequency shift
fs = 4096
fshift = 400.
speedup = 1.
fss = int(float(fs)*float(speedup))
# shift frequency of the data
strain_H1_shifted = reqshift(strain_H1_whitenbp,fshift=fshift,sample_rate=fs)
strain_L1_shifted = reqshift(strain_L1_whitenbp,fshift=fshift,sample_rate=fs)
# write the files:
write_wavfile(eventname+"_H1_shifted.wav",int(fs), strain_H1_shifted[indxd])
write_wavfile(eventname+"_L1_shifted.wav",int(fs), strain_L1_shifted[indxd])
# and the template:
template_p_shifted = reqshift(template_p_smooth,fshift=fshift,sample_rate=fs)
write_wavfile(eventname+"_template_shifted.wav",int(fs), template_p_shifted[indxt])
fna = eventname+"_template_shifted.wav"
print(fna)
Audio(fna)
GW150914_template_shifted.wav
<audio controls="controls" >
<source src="data:audio/x-wav;base64,UklGRiSAAABXQVZFZm10IBAAAAABAAEAABAAAAAgAAACABAAZGF0YQCAAAAJ/+P+LP/H/3gA+wAcAc8AMQCA/wH/5f43/9f/hwADARoBwwAgAHL/+f7n/kP/6P+WAAoBFwG3ABAAY//z/uv+T//4/6QAEAETAaoAAABV/+3+8P5d/wgAsQAWAQ4BnQDw/0j/6P71/mr/GQC+ABoBCAGOAN//O//k/vz+ef8qAMsAHQEBAYAAzv8v/+H+A/+I/zoA1wAgAfkAcQC+/yP/3/4M/5f/SwDiACEB8ABhAK3/Gf/e/hX/p/9bAOwAIgHmAFEAnf8P/97+H/+3/2sA9gAhAdwAQQCN/wX/3/4q/8j/ewD/ACAB0QAwAH7//f7h/jX/2P+KAAcBHQHFAB8Abv/1/uT+Qv/p/5kADgEaAbgADgBg/+/+6P5P//r/qAAUARYBqwD+/1H/6f7t/lz/CwC1ABoBEAGdAO3/RP/k/vP+a/8cAMMAHgEKAY4A3P83/+D++v56/y0A0AAhAQIBfwDL/yr/3f4C/4n/PgDcACQB+gBvALr/H//b/gr/mf9PAOcAJQHxAF8Aqf8U/9v+FP+p/2AA8gAlAecATgCY/wn/2/4e/7r/cAD7ACUB3AA9AIj/AP/c/ir/y/+AAAQBIwHQACwAeP/4/t7+Nv/c/5AADAEgAcQAGwBo//D+4v5D/+7/nwATARwBtgAJAFn/6f7m/lD///+uABoBGAGoAPn/S//k/uv+X/8QALwAHwESAZoA5/89/9/+8v5u/yIAygAjAQsBiwDV/zD/2/75/n3/NADXACYBAwF7AMT/I//Z/gH/jf9FAOMAKAH6AGoAsv8X/9f+C/+e/1YA7gApAfAAWgCh/wz/1/4V/6//ZwD5ACkB5QBIAJD/Av/X/iD/wP94AAIBKAHaADcAf//5/tn+LP/S/4kACwEmAc0AJQBv//H+3P45/+T/mQATASIBwAATAGD/6f7g/kf/9v+oABoBHgGyAAEAUP/j/uX+Vf8HALcAIAEYAaMA8P9C/97+6/5k/xkAxQAlARIBlADe/zT/2f7y/nT/KwDTACgBCgGEAMz/J//W/vr+hP8+AOAAKwEBAXQAuf8a/9T+A/+V/08A7AAsAfgAYwCo/w7/0/4N/6b/YQD3AC0B7QBRAJb/BP/T/hj/uP9zAAIBLAHiAD8Ahf/6/tX+JP/K/4QACwEqAdUALQB0//H+1/4x/9z/lAATAScByAAbAGT/6f7b/j//7/+kABsBIwG6AAgAVP/i/t/+Tv8AALQAIQEeAasA9v9F/9z+5f5d/xMAwwAnARcBmwDk/zb/1/7s/m3/JgDRACsBEAGLANH/KP/U/vT+ff84AN8ALgEHAXoAvv8b/9H+/f6O/0sA6wAwAf4AaQCs/w//0P4H/6D/XQD3ADEB8wBXAJr/A//Q/hL/sv9vAAIBMAHoAEUAiP/5/tH+H//F/4EADAEuAdsAMgB2/+/+0/4s/9f/kgAVASwBzgAfAGX/5/7W/jn/6v+jAB0BKAG/AAwAVf/g/tv+SP/9/7MAJAEjAbAA+v9F/9n+4f5Y/xAAwgApARwBoADn/zb/1P7n/mj/IwDRAC4BFQGQANP/KP/Q/u/+ef82AN8AMQEMAX4AwP8a/87++f6K/0kA7AAzAQIBbQCt/w3/zP4D/53/XAD5ADQB+ABaAJv/Av/M/g7/r/9vAAQBNAHsAEgAiP/3/s3+G//C/4EADgEyAd8ANAB2/+3+z/4o/9X/kwAYATAB0QAhAGX/5P7S/jb/6f+kACABLAHCAA0AVP/c/tf+Rf/8/7QAJwEmAbMA+/9E/9b+3f5V/w8AxAAtASABowDn/zT/0f7k/mb/IwDUADEBGAGSANP/Jf/N/uz+d/83AOIANQEPAYAAv/8X/8r+9v6J/0oA7wA3AQUBbgCs/wr/yP4A/5z/XgD8ADgB+gBbAJn//v7I/gz/r/9xAAgBOAHuAEcAhv/z/sn+GP/C/4QAEgE2AeEANABz/+n+y/4m/9b/lgAcATMB0wAgAGH/4P7P/jX/6v+nACQBLwHDAAwAUP/Y/tT+Rf///7gAKwEpAbMA+P8//9L+2v5V/xIAyQAxASIBogDk/y//zP7h/mb/JgDYADYBGgGRAND/IP/I/ur+eP87AOcAOQERAX8Au/8S/8b+9P6L/08A9QA7AQcBbACn/wX/xP7//p7/YgABATwB+wBYAJT/+f7E/gv/sv92AA0BOwHuAEQAgP/t/sb+GP/G/4kAGAE5AeEAMABu/+P+yP4n/9r/nAAhATYB0gAbAFv/2v7M/jb/7/+uACoBMQHCAAcASv/T/tL+Rv8DAL8AMQErAbEA8/85/8z+2P5Y/xgAzwA2ASQBoADe/yn/x/7g/mn/LQDfADsBGwGNAMn/Gf/E/un+fP9BAO4APgERAXoAtP8L/8H+9P6P/1YA/AA/AQYBZwCg//7+wP4A/6P/agAJAUAB+gBTAIz/8f7B/g3/uP9+ABQBPwHsAD4AeP/m/sL+G//M/5IAHwE8Ad4AKQBl/9z+xv4q/+L/pAAoATgBzgAUAFL/1P7K/jr/9/+3ADABMwG+AP//QP/M/tD+S/8LAMgANwEsAawA6v8v/8b+2P5d/yEA2QA8ASQBmgDU/x//wv7h/nD/NgDpAEABGwGHAL//EP++/uv+g/9MAPcAQwEQAXMAqv8C/73+9v6X/2EABQFEAQQBXgCV//T+vP4D/6z/dQASAUMB9wBKAIH/6P69/hD/wf+JAB0BQQHoADQAbf/e/sD+H//X/50AJwE+AdkAHgBZ/9T+xP4w/+z/sAAwATkByAAJAEf/zP7K/kH/AQDDADgBMwG2APT/Nf/F/tH+U/8YANQAPgErAaQA3f8k/8D+2f5m/y4A5QBCASIBkQDH/xP/vP7j/nn/QwD0AEYBGAF9ALL/BP+5/u7+jv9ZAAMBRwEMAWgAnP/2/rj++v6j/28AEAFIAf8AUwCH/+r+uf4I/7j/hAAcAUYB8QA9AHL/3v67/hf/zv+YACcBQwHhACcAXv/U/r/+J//k/6wAMQE/AdAAEABL/8v+xP44//v/vwA5ATkBvwD7/zj/w/7K/kv/EQDRAEABMgGsAOT/Jv+9/tP+Xv8nAOIARQEpAZgAzf8V/7n+3P5y/z4A8wBJAR4BhAC3/wX/tv7n/ob/VAACAUsBEwFvAKH/9/60/vT+nP9qABABTAEGAVkAi//p/rX+Av+y/4AAHQFLAfcAQwB1/93+tv4R/8j/lQApAUgB5wAsAGH/0v66/iH/3/+qADMBRAHXABUATP/J/r/+Mv/2/70AOwE+AcUA//85/8H+xf5F/w0A0ABDATcBsgDo/yf/uv7N/lj/JADiAEgBLgGeANH/Ff+1/tf+bf87APMATAEkAYkAuf8F/7L+4v6C/1IAAwFPARgBcwCj//X+sf7v/pj/aQASAVABCgFdAIz/5/6x/v3+rv9/AB8BTwH8AEYAdv/b/rL+DP/F/5UAKwFMAewALwBh/9D+tf4d/93/qgA2AUgB2wAXAEz/xv66/i7/9P++AD8BQgHIAAAAOP+9/sH+Qf8LANIARgE7AbUA6f8l/7f+yf5V/yMA5ABMATIBoADR/xP/sv7T/mr/OwD2AFABJwGLALn/Av+u/t7+gP9TAAYBUwEbAXUAov/y/qz+6/6W/2oAFQFUAQ4BXgCL/+T+rP76/q3/gQAjAVMB/wBHAHT/1/6u/gn/xf+XAC8BUAHuAC8AXv/L/rL+Gv/d/60AOgFMAd0AFwBJ/8H+t/4t//X/wgBDAUYBygD//zT/uf6+/kD/DQDWAEsBPgG2AOf/If+y/sb+Vf8mAOgAUAE1AaEAzv8P/63+0P5q/z4A+gBVASoBiwC2//3+qv7c/oH/VgALAVcBHQF0AJ7/7f6o/ur+mP9uABoBWAEPAVwAhv/f/qj++f6w/4UAKAFXAf8ARABv/9L+qv4J/8j/nAA0AVQB7gAsAFn/xv6u/hv/4f+yAD8BTwHcABMAQ/+8/rT+Lv/6/8gASAFJAcgA+/8u/7T+u/5C/xIA3ABQAUABtADi/xr/rf7E/lf/KwDvAFYBNgGeAMj/CP+o/s/+bf9EAAEBWQErAYcAr//2/qX+3P6F/10AEgFcAR0BcACX/+b+pP7q/pz/dQAhAVwBDwFXAH//2P6l/vn+tf+NAC8BWgH+AD4AZ//L/qf+C//O/6QAOwFXAewAJQBQ/7/+rP4d/+j/uwBGAVEB2QAMADr/tf6y/jH/AADQAE8BSgHFAPP/Jf+t/rr+Rv8aAOUAVgFBAa8A2f8R/6f+xP5c/zQA+ABbATYBmAC////+o/7Q/nT/TgAKAV8BKgGBAKb/7f6g/t3+jP9nABsBYAEcAWgAjf/d/qD+7P6k/4AAKgFgAQwBTwB0/8/+of79/r7/mAA4AV0B+gA1AFz/wv6l/g//2P+vAEQBWQHnABsARf+3/qr+I//y/8YATgFTAdMAAQAv/67+sf43/wsA3ABWAUsBvgDn/xr/pv66/k7/JgDwAF0BQQGnAM3/Bv+h/sX+Zf9AAAQBYQE1AY8As//z/p3+0v59/1oAFQFkAScBdwCZ/+L+nP7h/pb/dAAmAWQBGAFdAH//0/6c/vH+sP+NADUBYwEGAUMAZv/F/p7+A//K/6YAQgFgAfQAKQBO/7j+o/4W/+X/vgBNAVoB4AAOADf/rv6p/iv/AADUAFcBUwHKAPP/If+l/rL+Qf8aAOoAXgFJAbMA2P8M/5/+vP5Y/zUA/gBkAT4BnAC9//j+mv7J/nH/UAARAWcBMQGDAKL/5v6Y/tf+iv9rACMBaQEiAWkAiP/V/pf+5/6k/4UAMwFoAREBTgBu/8b+mf74/r//ngBBAWUB/gAzAFX/uf6d/gz/2v+3AE0BYQHqABgAPf+u/qP+IP/2/88AVwFaAdUA/f8m/6T+q/43/xEA5QBgAVEBvgDh/xD/nf60/k7/LQD7AGYBRgGmAMX/+/6X/sD+Z/9IAA8BawE5AYwAqv/o/pT+zv6B/2QAIQFtASoBcgCP/9b+k/7e/pv/fwAyAW0BGQFXAHT/x/6U/vD+t/+ZAEEBawEHATwAWv+4/pf+A//S/7MATgFmAfIAIABB/6z+nf4Y/+//ywBZAWAB3QADACn/ov6k/i//CgDjAGIBVwHGAOj/Ev+a/q7+Rv8nAPkAaQFMAa0Ay//9/pT+uv5g/0MADgFuAUABlACv/+n+kP7I/nr/XwAhAXEBMQF5AJP/1v6O/tj+lf97ADIBcQEgAV0Ad//G/o/+6f6x/5YAQgFwAQ0BQQBc/7f+kv79/s3/sQBQAWwB+QAkAEP/qv6X/hL/6v/KAFwBZQHjAAcAKv+f/p/+Kf8GAOIAZQFdAcsA6/8S/5f+qP5B/yQA+QBtAVIBsgDO//z+kP60/lv/QQAPAXIBRQGYALH/5/6M/sL+df9eACIBdQE2AX0AlP/U/or+0v6R/3oANQF2ASUBYQB4/8P+i/7k/q7/lgBFAXQBEgFEAFz/tP6N/vj+y/+xAFMBcAH9ACYAQv+m/pP+Dv/o/8sAXwFqAeYACQAo/5v+mv4l/wUA5ABpAWEBzgDs/xD/kv6k/j7/IwD8AHEBVgG1AM7/+f6M/rD+WP9BABIBdwFJAZoAsP/k/of+v/50/18AJgF6ATkBfgCS/9D+hv7P/pD/fAA5AXoBKAFhAHX/v/6G/uL+rf+ZAEkBeQEUAUQAWf+v/on+9v7L/7QAWAF0Af8AJgA+/6L+j/4M/+r/zwBkAW4B6AAHACT/lv6W/iT/BwDpAG4BZQHPAOn/C/+N/qH+Pv8mAAEBdgFZAbUAyv/0/of+rf5Z/0UAFwF8AUsBmQCs/97+g/68/nX/YwAsAX8BOwF9AI7/y/6B/s3+kv+BAD8BfwEpAV8AcP+5/oL+4f6w/54ATwF9ARUBQABT/6n+hf72/s//uwBeAXgB/wAhADj/nP6L/g3/7v/WAGoBcQHnAAIAHf+Q/pT+Jv8NAPAAdAFnAc0A4/8E/4j+n/5A/ywACAF8AVsBsgDE/+3+gf6s/lz/TAAfAYEBTAGVAKX/1/59/rz+ef9rADMBgwE7AXgAhv/D/nz+zv6Y/4kARgGDASgBWQBo/7H+fv7i/rf/pwBXAYABEwE6AEr/of6C/vj+1v/EAGUBewH8ABoALv+U/on+EP/2/98AcgFzAeMA+/8U/4n+kv4q/xYA+QB7AWgByADa//r+gf6e/kb/NgASAYIBWwGsALr/4/57/qz+Y/9WACkBhwFLAY4Amv/N/nj+vf6B/3YAPQGIATkBbwB7/7n+eP7Q/qD/lQBQAYcBJQFQAFz/qP56/ub+wP+zAGABhAEPAS8APv+Y/n/+/f7h/9AAbgF9AfYADwAi/4z+h/4X/wEA7AB6AXQB3ADu/wf/gf6S/jL/IgAGAYMBaAHAAM3/7v56/p/+T/9DAB4BiQFZAaIArP/W/nX+r/5t/2QANQGMAUgBhACM/8H+c/7B/oz/hABJAY0BNQFkAGz/rf50/tb+rf+kAFsBiwEfAUMATf+d/nf+7P7O/8IAawGGAQcBIQAv/47+fv4F/+//3wB4AX4B7QAAABP/gv6H/iD/EAD7AIMBcwHSAN//+P55/pP+Pf8yABUBiwFmAbQAvf/f/nL+ov5b/1QALQGQAVYBlQCb/8j+b/6z/nv/dQBDAZIBQwF1AHr/s/5u/sf+m/+WAFcBkQEuAVQAWv+g/nH+3v69/7YAaAGNARYBMgA7/5D+dv72/t//1AB3AYYB/QAQAB3/g/5+/hH/AQDxAIMBfQHhAO7/Af94/on+Lf8kAA0BjAFwAcQAy//m/nD+l/5M/0YAJgGTAWEBpQCo/87+a/6o/mz/aQA+AZYBTwGEAIb/t/5p/rv+jf+LAFMBlgE6AWMAZf+j/mr+0f6v/6sAZgGUASMBQABF/5L+b/7p/tH/ywB2AY4BCgEdACX/g/52/gT/9f/qAIQBhQHuAPr/CP93/oD+IP8XAAYBjgF6AdEA1//s/m7+jf4//zsAIQGWAWsBsQCz/9L+aP6e/l//XgA6AZoBWQGRAJD/uv5l/rH+gP+BAFEBnAFFAW8Abv+l/mX+xv6j/6MAZQGaAS4BTABM/5L+aP7e/sb/xAB2AZUBFQEoACz/gv5v/vn+6v/kAIUBjQH5AAMADf91/nj+Fv8OAAIBkAGCAdsA4P/w/mv+hf40/zIAHgGZAXMBvAC7/9X+ZP6V/lX/VwA4AZ4BYgGbAJf/vP5g/qj+d/97AE8BoQFOAXgAdP+m/mD+vf6a/54AZQGfATcBVABR/5L+Yv7V/r7/wAB3AZsBHgEwADD/gf5o/vD+4//gAIcBkwECAQsAEP9z/nL+Df8HAP8AkwGJAeQA5v/y/mj+fv4s/y0AHAGdAXsBxADB/9b+YP6O/k3/UgA3AaMBaQGiAJz/vP5c/qD+b/93AFABpQFVAX8Ad/+l/lr+tv6T/5sAZgGlAT4BWgBU/5D+Xf7O/rj/vgB5AaEBJAE1ADH/fv5i/un+3v/fAIoBmQEIAQ8AEf9v/mz+B/8DAP8AlwGPAeoA6v/y/mT+eP4m/yoAHQGhAYEByQDD/9X+XP6I/kj/UAA5AacBbwGnAJ3/uv5X/pv+a/91AFIBqgFbAYMAeP+i/lX+sf6Q/5oAaQGqAUMBXQBT/4z+V/7J/rb/vgB9AaYBKQE3ADD/ev5d/uX+3P/hAI4BnwEMARAAD/9r/mb+A/8CAAIBnAGUAe0A6v/v/l/+c/4j/yoAIAGmAYUBzADD/9H+Vv6D/kb/UQA9AawBdAGoAJz/tv5S/pf+av93AFcBsAFfAYQAdv+d/lD+rf6P/50AbgGvAUYBXQBQ/4f+Uv7H/rb/wgCCAasBLAE2ACz/df5Y/uP+3v/lAJQBowEOAQ4ACv9l/mL+Av8FAAcBoQGYAe4A5//p/ln+b/4j/y0AJgGrAYkBywC//8v+Uf6A/kb/VQBDAbIBdgGnAJf/r/5M/pT+bP99AF4BtQFgAYEAcP+W/kv+rP6S/6MAdQG0AUgBWgBK/4D+Tv7G/rr/yQCJAa8BLAEyACX/bv5U/uP+4//tAJoBpwENAQkAAv9e/l/+A/8LAA8BqAGbAewA4f/h/lP+bf4m/zQALgGyAYsByAC4/8P+S/5//kr/XQBMAbgBdwGjAI//p/5G/pT+cf+FAGYBugFgAXwAZ/+O/kb+rP6Y/60AfgG5AUYBUwBA/3j+Sv7I/sH/0wCSAbMBKQEqABv/Zf5R/uf+6//3AKMBqgEJAQAA+P5W/l3+CP8UABkBsAGcAeYA1//W/kv+bP4s/z4AOQG5AYsBwgCt/7j+RP5//lL/aABXAb4BdgGbAIP/nP5A/pX+ef+RAHEBwAFeAXIAW/+D/kH+r/6i/7kAiAG9AUIBSQAz/23+Rv7N/sz/4ACcAbYBJAEeAA7/W/5P/u3+9/8EAawBqwECAfT/6v5N/lz+EP8hACcBuAGcAd4Ayf/J/kP+bf41/00ARwHBAYoBuACe/6r+Pf6B/lz/dwBkAcUBcwGPAHT/j/47/pr+hf+hAH4BxQFZAWUAS/92/j3+tf6w/8kAlQHAATwBOgAj/2L+Q/7U/tv/8ACnAbgBGwEPAP3+Uf5O/vb+BwAVAbYBqwH4AOP/2f5E/l3+G/8zADcBwQGaAdIAt/+4/jv+b/5C/18AVwHIAYYBqgCL/5r+Nv6G/mv/igB0AcsBbQGAAGH/f/42/qH+lv+0AI0ByQFRAVQAN/9o/jr+vv7C/90AogHDATEBKAAP/1T+Qv7g/u//BAG0AbgBDwH8/+n+Rf5P/gT/GwApAcEBqQHpAM7/xv45/mD+Kv9IAEoBywGWAcEAof+m/jL+df5T/3UAaQHQAX8BlwB1/4j+MP6O/n7/oQCFAdABZAFsAEr/b/4y/qv+q//LAJ0BzAFFAT8AIP9Z/jj+y/7Y//QAsQHDASMBEQD4/kf+Q/7v/gUAGwHBAbYB/gDj/9P+Of5S/hX/NAA/AcwBpAHXALX/sP4v/mb+Pv9iAGAB0wGPAa0Ah/+R/iv+fv5p/48AfgHWAXUBgQBa/3X+K/6a/pb/uwCYAdQBVwFTAC//XP4v/rn+xP/mAK4BzQE2ASQABf9I/jj+3P7z/w8BwAHBAREB9v/e/jj+Rv4C/yIANQHOAbEB6gDH/7n+Lf5Z/iv/UQBYAdcBnQG/AJf/mP4m/m/+V/+AAHgB2wGEAZMAaf96/iT+iv6E/64AlAHbAWcBZQA8/2D+J/6p/rP/2gCsAdUBRgE1ABH/Sf4v/sz+4/8EAcABywEhAQUA6P44/jz+8v4SACwB0AG8AfoA1v/B/ir+Tf4b/0MAUQHaAakBzwCl/57+Iv5j/kf/cwBzAeABkAGjAHX/fv4f/n3+df+iAJEB4QF0AXQAR/9i/iD+nP6k/9AAqwHdAVMBRAAa/0r+J/6+/tX//ADAAdQBLwESAO/+Nv4y/uT+BQAlAdIBxgEIAeL/x/4o/kP+Df83AEwB3gGzAd0AsP+i/h7+WP46/2kAbwHlAZwBsAB//4D+Gf5y/mj/mQCPAecBfwGAAE//Y/4Z/pD+mP/IAKsB5AFfAU8AIf9J/h/+s/7K//YAwgHcATsBHQD0/jT+Kv7Z/v3/IQHUAc8BEwHr/8v+JP46/gL/LgBJAeIBvAHoALj/pP4Z/k/+L/9hAG4B6gGlAboAhv+B/hT+aP5e/5MAjwHtAYkBiQBU/2L+E/6H/o//xACsAesBaAFXACX/R/4Y/qn+wv/zAMQB4wFEASQA9/4x/iL+0P72/x8B2AHXARsB8f/M/iD+Mv76/ikASAHmAcQB8AC9/6T+FP5H/if/XQBvAfABrQHBAIn/gP4O/mH+V/+QAJEB8wGRAZAAV/9g/g3+f/6K/8IArwHyAXABXQAm/0T+Ef6i/r3/8gDIAeoBSwEoAPf+Lf4c/sr+8v8gAd0B3QEhAfT/y/4b/iv+9P4nAEoB7AHLAfUAv/+i/g/+QP4j/1wAcgH1AbMBxQCK/3z+CP5b/lT/kACVAfkBlgGTAFb/W/4H/nr+h//DALQB+AF1AV8AJP8//gv+nv68//UAzgHwAU8BKQD0/if+Fv7G/vL/IwHiAeMBJQH0/8b+Ff4m/vL+KABPAfIB0AH3AL3/nf4I/jv+If9eAHcB/AG4AcYAh/92/gL+Vv5T/5QAmwEAApoBkwBS/1X+Af52/oj/yAC6Af4BeAFdAB7/OP4F/pv+vv/6ANUB9gFRASYA7f4g/hD+xf72/yoB6gHoASUB7/+//g7+If7y/iwAVgH5AdQB9gC4/5X+Af44/iP/ZAB/AQMCuwHEAID/bv77/VT+Vv+bAKMBBgKcAY8ASv9M/vr9df6M/9AAwwEDAngBWAAW/y/+AP6c/sT/BAHdAfsBUAEgAOT+F/4M/sb+/f80AfIB7AEjAej/tf4G/h7+9f41AGEBAQLXAfIArv+K/vr9Nv4o/24AigEKArwBvgB2/2P+9P1U/l3/pgCuAQ0CmwGHAD//Qf71/Xf+lf/cAM4BCQJ2AU8ACf8l/vz9n/7O/xAB6AH/AUsBFQDX/g3+Cf7L/gcAQQH8Ae4BHQHc/6j+/P0d/vz+QgBuAQoC1wHqAKH/ff7x/Tb+MP98AJcBEgK6AbQAZ/9W/u39Vv5o/7UAuwETApgBfAAv/zT+7/17/qH/7ADaAQ0CcAFCAPr+GP74/aX+3P8gAfQBAQJEAQYAx/4C/gf+1P4XAFEBBwLvARMBy/+X/vL9Hf4H/1MAfwETAtYB3gCQ/2z+6f05/j3/jgCnARkCtwGmAFX/Rv7m/Vv+d//IAMsBGAKSAWwAHP8m/uv9g/6y//8A6QERAmgBMADm/gv+9v2v/u//NAEBAgICOQH0/7P+9v0H/uH+KwBlARIC7QEFAbf/hP7o/SD+Fv9oAJIBHQLSAc4Aev9a/uH9P/5P/6QAugEgArABlAA+/zT+4P1k/or/3wDcAR0CiAFXAAX/Ff7n/Y7+x/8XAfgBEwJbARoAz/78/fX9vv4FAEsBDgIBAikB3P+c/un9Cv7y/kQAfAEeAukB8wCd/27+3f0m/ir/ggCoASYCygG5AF//RP7Z/Uj+Zf+/AM4BJwKlAX0AI/8h/tz9cP6j//oA7wEgAnoBPgDq/gP+5v2d/uL/MgEJAhMCSgH//7T+7P33/dD+IQBmAR0C/gEVAb//gv7c/Q/+B/9hAJUBKQLiAdsAf/9V/tT9L/5C/6AAwAEuAr8BnwBB/y3+0v1V/oD/3gDlASsClgFgAAT/C/7Z/YD+wP8ZAQMCIQJnAR8Ay/7w/ef9sv4BAFABGwIQAjQB3v+W/tz9/P3o/kIAgwErAvYB+wCd/2X+0P0Z/iP/hACxATQC1gG/AFz/Ov7L/Tz+Yf/EANoBNQKvAX8AHf8U/s79Zv6h/wEB/AEuAoIBPgDh/vX92f2W/uT/PAEXAh8CUAH8/6n+3v3r/cz+JgByASsCCQIYAbj/df7N/QX+Bv9pAKQBOALrAdsAdv9G/sX9J/5E/6sA0AE8AsYBnAA0/x3+xf1P/oX/6wD1ATkCmgFZAPb++v3M/X7+yP8pARQCLQJpARUAuv7f/dz9sv4MAGIBLAIZAjEB0v+D/sz99P3s/lEAlwE7Av0B9QCN/1H+wP0T/ir/lQDGAUMC2gG2AEr/Jf69/Tr+bP/XAO8BQgKwAXIACP///cH9aP6w/xcBEQI5An8BLQDK/uH9z/2b/vb/UwEsAicCSAHo/5D+yv3k/dX+OwCLAT4CDgINAaL/W/67/QL+E/+BAL0BSQLsAcwAXP8s/rX9J/5V/8YA6QFKAsMBiQAZ/wP+uP1U/pr/CAEOAkQCkwFCANj+4v3D/Yf+4f9HASwCNAJdAfz/m/7I/df9wf4pAIEBQQIcAiEBs/9k/rf98/3//nAAtgFOAvwB4ABs/zL+r/0X/kL/twDlAVIC1AGcACb/Bv6v/UP+iP/8AA0CTgKkAVQA4/7i/bj9dv7Q/z0BLQJAAm4BCwCk/sb9yv2v/hkAegFFAikCMgHC/2r+s/3l/e7+YwCxAVQCCgLxAHn/Nf6o/Qn+Mv+rAOIBWgLiAasAMf8I/qf9NP55//IADAJXArMBYwDs/uH9rv1n/sL/NQEvAkoCfQEYAKr+w/2//aH+DQB0AUkCNQJAAc7/bv6u/dr94P5YAK4BWgIWAv4Agv83/qH9/f0k/6MA4gFhAu8BuAA5/wf+n/0o/m3/7AAOAl8CwAFuAPH+3/2l/Vv+uP8xATICVAKJASIArv6//bb9lf4EAHIBTgI/AkwB1v9v/qj9z/3V/lEArgFgAiACCQGI/zf+m/3y/Rv/ngDjAWkC+QHBAD3/Bf6X/R7+ZP/oABECaALKAXYA8/7b/Z39Uf6x/zABNwJdApIBKACu/rr9rf2M/gAAcwFUAkgCVAHa/27+ov3G/c7+TgCwAWcCKQIQAYv/M/6T/en9FP+cAOcBcAICAsYAPf8A/o/9Fv5g/+kAFgJwAtEBeQDy/tX9lP1K/q7/MgE9AmUCmQEqAKv+s/2l/Yb+//93AVsCUAJZAdr/af6a/b/9yf5PALYBbwIwAhMBif8t/ov94/0S/58A7gF5AggCyAA6//n9h/0Q/l//7QAeAngC1gF5AO3+zf2N/Ub+r/84AUYCbAKcASgApP6q/Z79hP4BAH4BZAJWAloB1v9h/pH9uf3J/lQAvgF4AjYCEwGD/yT+gv3e/RP/pgD3AYECDALGADL/7/1+/Q3+Yv/2ACgCfwLYAXUA5P7D/Yb9Rf61/0IBUAJzApwBIQCa/qD9mP2F/ggAiQFuAlsCWAHN/1X+h/20/cz+XQDKAYECOQIOAXn/GP55/dz9Gf+xAAQCigINAr8AJv/i/Xb9Df5q/wIBNQKHAtcBbADW/rb9f/1H/r//UAFcAngCmQEWAIv+lP2T/Yr+FACYAXoCXwJSAcD/Rv58/bL90/5rANoBjAI6AgYBav8I/m/93P0j/8EAEwKSAgsCtAAV/9P9b/0Q/nf/FAFEAo0C0wFeAMX+p/15/U3+zv9iAWsCfQKRAQYAef6G/ZD9kv4mAKsBhgJgAkgBrv8z/nD9sv3f/n4A7AGXAjkC+QBW//b9Zv3f/TH/1QAmApsCBwKkAAD/wf1n/Rb+iP8pAVUCkwLLAUsArv6X/XX9V/7i/3kBegJ/AoYB8v9i/nf9j/2g/jwAwQGUAmACOQGX/x3+ZP21/fD+lwACAqICNALmAD3/4P1c/eX9Rf/vADsCowL+AY4A5v6t/WH9If6f/0QBaQKYAr4BMwCU/oX9c/1l/vz/kwGLAoACdQHX/0j+aP2R/bL+WADcAaICXAIlAXr/A/5X/bv9Bv+0ABwCrAIsAs4AH//I/VP98P1f/w4BUgKqAvIBcwDH/pf9Xf0w/rz/YwF9ApoCrQEVAHX+cf1z/Xn+GgCyAZ0CfQJgAbb/Kf5Y/Zb9yv55APkBsAJUAgsBWP/m/Uv9xf0i/9cAOAK2AiACsAD7/q39TP3//X//MQFrAq4C4AFRAKP+f/1a/UT+3/+GAZMCmQKWAfH/Uv5d/Xb9kv5AANUBrwJ3AkQBkP8H/kj9n/3o/qEAGgK9AkgC6gAv/8f9Qf3U/UT//wBWAr4CDgKMANP+kf1H/RT+pf9aAYYCsALIASkAe/5n/Vz9X/4HAK4BqgKVAnkBx/8q/kn9fv2y/msA+wHAAmwCIQFj/+P9Ov2t/Q3/zgA+AsgCNwLDAAL/pf05/ej9bv8tAXYCwwL2AWAApf5z/Ub9L/7T/4cBoQKuAqkB+/9O/k79Yf2A/jgA2gG/AowCVAGV/wD+N/2L/dr+ngAkAs8CXAL3ADD/u/0u/cH9Ov8BAWMC0QIfApQAzv6C/TT9BP6f/2ABlgLDAtYBLQBy/lX9Sf1S/gYAuQG8AqcCgwHF/x7+N/1s/ar+bwAJAtMCfAInAV3/0/0n/Z79Cf/WAE8C3AJEAsUA9/6S/Sb93f1v/zoBiQLVAv8BXQCW/l/9NP0o/tj/mAG2Ar8CrwHz/zz+Of1S/X3+QwDuAdUCmQJUAYj/6v0i/X/93P6tADsC5AJmAvIAHv+k/Rr9uv1C/xUBewLjAiQCiQC4/mn9I/0B/qz/eAGvAtMC1gEdAFn+Pf07/VX+GQDUAdQCswJ+AbD/Av4f/WP9sv6GACYC6gKEAhwBQ/+1/RH9mv0Y//IAbQLwAkYCswDZ/nT9FP3e/YP/WgGnAuUC+gFFAHX+Qf0n/TD+8/+6AdICygKjAdb/GP4e/Ur9jP5iABIC7gKeAkIBZv/G/Qr9ff3y/tIAXwL6AmQC2QD4/n/9B/2//V7/PQGfAvQCGwJqAI/+R/0V/Q7+z/+jAdAC3gLGAfn/Lv4d/TT9av5BAAAC8gK2AmUBhf/W/QT9Y/3P/rQAUgIDA38C+wAU/4r9/Pyj/Tz/IwGXAgIDOAKLAKf+S/0F/fD9r/+NAc4C8ALkARcAQf4c/SD9Sv4jAO8B9QLMAoQBov/k/f78TP2w/pkARgILA5cCGgEt/5P98fyJ/R7/DAGRAg4DUwKpALz+T/33/NX9kv96Ac0CAAMAAjIAUf4c/Q79L/4JAOEB+ALfAqABuv/w/fn8OP2U/oIAPQISA60CNQFC/5r96Pxz/QP/+QCMAhoDagLCAM3+Uv3p/L39ef9rAcwCDwMYAkoAX/4a/f78F/70/9UB/ALxArgBz//5/fP8Jf19/m8ANQIaA8ACTAFU/5/93vxf/e3+6QCJAiUDfgLYANv+U/3d/Kn9Zf9fAc0CHAMsAl0Aaf4X/e/8Av7i/80BAQMBA8wB4P///ez8Ff1p/mAAMQIiA9ECYAFh/6H91fxN/dv+3QCIAjADkALpAOX+Uv3R/Jf9Vf9XAdACKQM+AmwAb/4S/eH88f3U/8kBBwMPA90B7P8C/uT8Bv1Z/lUAMAIrA+ECbwFq/6H9y/w+/c3+1gCLAjsDnwL2AOv+Tv3F/Ij9Sf9TAdYCNgNMAnYAcf4L/dT84/3L/8gBDwMcA+oB8/8B/tv8+fxN/k8AMwI1A+4CeQFu/5z9wPwx/cP+1ACRAkYDrAL+AOz+R/25/Hz9Qv9UAd4CQgNXAnwAb/4C/cj82f3I/8wBGQMoA/IB9f/7/dH87fxF/k8AOgJAA/kCgAFt/5T9tPwn/b7+1gCaAlIDtQICAef+PP2t/HT9Qf9aAekCTgNfAnwAaP72/L380/3J/9UBJQMzA/cB8v/x/cT84/xC/lQARQJNAwIDgQFm/4j9p/wf/b7+3wCnAl4DvAIAAd3+L/2h/G/9RP9lAfcCWQNiAnYAW/7o/LP80f3R/+MBNAM8A/cB6f/j/bb82/xE/l8AVQJbAwgDfgFa/3j9mvwa/cT+7QC4AmsDvwL4AM7+Hv2W/G39Tv92AQgDYwNiAmsASf7X/Kn81P3e//YBRQNEA/MB2v/P/aX81fxL/nAAaQJqAwwDdAFH/2P9jPwY/c/+AQHMAngDvwLrALj+Cf2K/HD9Xv+MAR0DbQNdAlkAMf7D/KL82/3y/w4CWANJA+gBxP+2/ZT80vxX/ocAggJ7Aw0DZQEu/0r9ffwa/eH+GwHlAoUDugLWAJ3+8fyA/Hf9dP+pATQDdQNSAkAAFP6t/Jz86P0MACwCbANMA9gBp/+Y/YH80vxq/qYAoAKMAwoDTwEO/y39bvwg/fr+PQECA5EDsQK7AHr+1fx2/IT9kv/MAU4DfANCAiAA8f2V/Jn8/P0uAE8CggNMA8IBg/91/W381vyF/swAwgKdAwMDMgHn/gv9YPwr/Rr/ZQEiA5wDogKYAFL+t/xv/Jf9uP/1AWoDfwMrAvn/yP17/Jn8F/5YAHgCmQNHA6MBV/9N/Vr83vym/vkA6QKtA/YCDQG4/uf8VPw8/UL/lAFEA6QDjAJtACL+l/xr/LH95v8kAocDfwMNAsj/mf1h/J/8Of6LAKUCsAM9A30BI/8h/Uf87fzR/i4BEwO7A+IC3wCD/r/8S/xV/XT/ygFpA6kDbgI4AOz9dfxs/NT9GwBaAqUDeQPmAY//Zf1H/Kr8Zf7FANgCxQMtA00B5/7x/Df8A/0F/2sBQAPGA8YCpwBF/pX8Rfx2/a7/BwKQA6kDSAL8/7D9U/xy/P/9XACUAsMDbQO1AU3/LP0v/Lz8m/4JAQ4D1wMUAxMBo/6+/Cr8Iv1D/7ABbwPMA6ECZQAB/mr8Rfyi/fP/SgK2A6IDFwK0/2/9Mvx//Db+pQDTAt4DWAN5AQL/8Pwa/Nf82/5VAUYD5QPyAs0AVv6K/CP8TP2M//sBnwPMA3ECGQC3/UD8TPzY/UIAkwLaA5MD2gFi/yn9FfyW/Hn++QAWA/QDOgMxAa7+svwL/P78KP+pAYAD7QPEAnwAA/5W/CP8gf3h/04CzQPEAzQCwv9n/Rj8Xvwb/pwA4AL6A3kDkAEG/+D8/Pu4/Mj+VgFaAwQEDwPcAFH+c/wE/DH9gv8FArkD7AOIAh4Aqf0k/C78xP1BAKUC+AOwA+oBXv8T/fb7e/xt/gEBLwMUBFIDOAGg/pb87Pvp/Cb/uwGeAwsE1QJ5AO39NvwH/HT96f9nAu4D3gM9ArX/Sv33+0b8F/6uAAADGwSOA48B8P69/Nz7qPzO/nABfwMjBBsD0QAy/k385/sp/ZP/KALfAwYEiwIIAIP9/fsY/Mf9XADOAh0EwgPhAT7/6PzS+238e/4mAVwDNQRbAyQBd/5o/M375vxA/+gBzAMmBNICWgC9/Qn88Pt9/Q0AmgIaBPADLgKK/xX9zvs6/C3+3gA2A0EElANzAbz+h/y6+6j88v6pAbUDQQQUA6cA9/0Y/M77OP3D/2YCEgQYBHUC0/9D/c77DPzl/ZgADwNJBMcDvAH+/qf8q/tw/Kj+awGcA1cETwPwAC/+Kvyy+/n8e/8zAggEOwS2AhgAcP3R++P7of1VAOgCTQT0AwACPf/H/KD7Pvxj/i8BggNpBIYDNAFm/j38mvvA/Dj/AQL8A1kE8gJZAJz91vvA+2P9FgDBAk8EHQRAAnn/6PyY+xH8JP73AGgDdwS3A3QBmv5Q/IX7jPz6/tIB7wNzBCkDlgDG/dz7oPsr/d3/nQJPBEEEeQKx/wb9kfvo++n9wwBPA4QE4wOuAcr+Y/xz+1z8wP6mAeIDiwRbA84A7f3j+4T79/yn/3sCTgRiBK4C4/8j/Yz7xPu1/ZQAOQOPBAsE4gH2/nT8Y/sx/I3+fwHXA6AEiAMAARD+6Ptq+8n8d/9dAk4EgATdAhAAPP2G+6L7hf1pACUDmQQvBBECHf+C/FP7C/xe/lwBzgO0BLADLAEv/uz7Uvuf/E3/QwJPBJsEBwM3AFH9gPuE+1v9RQAVA6QEUAQ7Aj7/jvxE++j7Nv4/AccDxwTVA1MBSP7u+zz7evwo/y4CUwS1BC0DWQBh/Xn7aPs2/ScACQOwBG4EXwJY/5X8NfvI+xT+KAHFA9oE9QNzAVr+7Psm+1r8C/8gAlkEzQRNA3QAbP1v+077F/0PAAMDvQSKBH0CbP+X/CT7rPv4/RgBxwPtBBEEjQFn/ub7EPs+/PT+FwJiBOQEaAOHAHD9Yvs1+/38AAADA80EowSUAnn/k/wS+5P74/0PAc4DAQUqBJ8BbP7b+/v6Jvzl/hYCcAT7BH0DkwBt/VL7H/vq/Pj/CQPfBLkEpQJ9/4n8/vp++9X9DgHbAxYFPgSqAWj+y/vl+hT83f4dAoIEEAWOA5cAYv09+wr73Pz4/xcD9QTNBK8Cef94/Oj6a/vO/RYB7wMtBU4ErQFc/rb7z/oH/N/+LQKZBCYFmAORAFD9Jfv2+tb8AAAtAw4F3wSyAmz/YPzP+l370P0oAQkERQVZBKcBR/6a+7j6//vp/kUCtgQ6BZsDggA0/Qn75PrX/BQASwMqBe0ErAJU/0D8tPpS+9r9QwEqBF0FXwSXASj+ePui+v77/v5oAtcETQWXA2kAD/3o+tX64PwyAHEDSQX3BJ0CMf8Y/Jf6Tfvv/WoBUgR3BV8EfQH+/VD7jfoE/B3/lAL+BF4FiwNEAOH8w/rK+vP8XAChA2sF/QSEAgP/6Pt5+k37Dv6bAYIEkAVYBFcByv0i+3j6EvxJ/8sCKgVsBXUDEwCp/Jv6w/oQ/ZIA2gOPBf0EXwLJ/rD7W/pV+zr+2QG4BKkFSAQlAYn97/pn+iv8gv8NA1oFdQVUA9X/Zvxw+sH6Ov3VABsEswX1BC4Cgv5w+z36Z/t0/iQC9QS+BS0E5AA9/bb6WvpP/Mn/WgOMBXkFJgOJ/xr8RPrI+nH9JgFlBNcF5ATuAS3+Kvsi+oP7vP57AjcF0AUGBJQA5fx7+lT6gfweALEDwQV0BekCLf/F+xn62fq4/YcBtwT5BccEnQHK/d36DPqs+xX/3wJ9BdoF0AMzAIL8PfpW+sT8hQATBPQFZAWcAsH+Z/vw+ff6EP72AQ8FFQabBDsBWf2N+v355vuA/08DxAXaBYgDwv8T/AD6ZfoY/f4AfQQlBkYFOwJF/gP7zfkl+3z+dAJrBSkGXQTFANv8Ovr5+TP8///MAwsGzgUtAz3/m/vH+YP6gv2IAe4ETgYWBcUBuP2a+rT5Zvv+/gEDyQUwBgsEOgBQ/On5BPqW/JEAUgRMBq8FugKk/hz7lvm1+gP+IwJkBW0G0AQ3ARz9MPqp+b/7l/+bAyUGJwafA5n/u/ue+SP6E/04Ad8EhQZ7BS0C+f2Z+nL5//qe/s8C2gV8BnEEjwBy/Mr5sfkz/EcAQAR5BgcGGAPh/h77Xvlb+q399QFxBa8GKwWEATz9Fvpg+Wf7Vf+KA0wGdAbyA8//vfts+dP5x/wQAewEwAbLBXACE/5/+jD5svpm/sQCAAbDBroEvABv/Jn5aPnx+ygAUASyBlAGUQPy/gH7H/kV+n798QGaBfIGawWmATH94/kb+S77QP+jA4cGuQYiBNb/mPsr+ZL5ovwYARwFBQcGBogC/f1F+ur4f/pb/ucCQgYHB+IEtwA//FL5KfnV+zsAjAT8BogGXwPQ/rz61fjl+X79IgLmBToHjwWWAfP8kfnZ+Bf7YP/sA9sG8wYpBKX/RPvY+GP5rPxYAXcFVQcoBm0Cr/3l+aH4bPqJ/kIDpAZGB+MEeADa+/H49vjm+4sA+QRYB6wGOgNw/kn6gPjU+bj9kAJaBoMHjQVIAXr8H/me+C/7wf9vBEgHHAf8AzP/vPp0+E358PzaAQIGrAcmBhICIP1c+Vr4hvr6/twDJgd5B7AE9P85+3n42vg0/CMBnAXCB68G0wLJ/aj5Kfjt+Tn+RAP2BsQHVwWwAL77jvh3+IP7bgAuBckHJweJA3L+/fkH+GL5gP2pAroG/wfwBWcBRvyw+CT43vq+/7sEwgePBzUEGv9a+vT35/jQ/A8CdQYsCHwGFgLQ/Nv43/dH+hP/RASxB+oH1gS9/7z67Pd5+Cv8eAErBk4I+ga8Alj9Dfmm97v5cP7NA5cHOAhrBVgAH/vs9xf4kfvlAN4FZQhsB1gD3f1D+Xf3PPnV/VgDeQd8CPQF7QCB+/P3wPcB+1oAkAV2CNMH6gNd/nv5UffI+EX96AJYB7gIcgZ4Ad/7/fdz93362P9FBYIIMQhxBNT+sfkv9134v/x/AjgH7QjmBvkBOPwH+Cz3A/pf/wAFjAiGCO0EQv/j+RH3/PdF/B8CGgcdCU8HbwKI/BH46/aU+fH+wQSXCNUIXQWl/w768/aj99b7ygECB0wJsAfZAs38Ffiu9jD5kP6NBKUIHgnDBfv/MfrU9lH3dPuCAfIGegkICDUDBv0U+HP21fg9/mQEuAhjCRwGQQBI+rL2BPce+0gB7AaqCVgIgwMx/Qn4OPaE+Pn9SgTSCKYJagZ4AFH6iva89tb6HwHzBt4JoQjCA0r98vf89T34xv1BBPYI5wmsBp4ASvpa9nn2nfoIAQkHFgrjCPADUf3O9771Afil/UsEJgkoCuAGrwAx+iL2OvZ0+gcBMAdUCh0JCwRC/Zv3ffXP95n9agRiCWcKBgerAAT63/UA9lz6HQFrB5kKTgkSBBv9V/c69ar3pP2gBK0JpQocB40Av/mR9cz1WfpNAboH5Qp1CQIE2fwA9/P0lPfI/fEEBwrhCh4HVABi+Tn1n/Vs+poBIAg4C5AJ1wN7/Jb2rPSQ9wv+XgVxChgLCgf8/+r41fR89Zv6BwKeCJALmgmOA/z7GPZm9KH3bv7rBekKSAvaBoD/Vvhp9Gf16fqZAjQJ6guPCSEDWvuG9ST0zvf4/pgGbwtsC4oG3f6k9/bzZvVd+1ED4glCDGoJiwKT+uP07PMc+K3/Zwf/C30LEwYO/tb2gvOA9fz7NASnCpMMIgnHAaT5MfTG85T4kQBYCJQMcwtsBQ/97PUT87710PxDBX8L1AytCMwAjfh387rzP/msAWoJJg1EC40E3fvr9LLyK/be/YEGYwz6DAEIlv9Q97zy1vMo+gEDmQqrDeMKawN2+tjzbfLV9jH/7QdKDfcMEQcd/vD1DvIo9Fv7kwTeCxQOPgr9Adn4wPJU8sv3zgCCCSYOtwzNBV78dfR98cT05fxjBisNTQ5FCTkADPey8X7yHvm8AjcL4w4mDCgEV/rt8iHxv/XQ/mwIcA49DuIHGv4Z9cXwA/Pg+v0E/AxmDykLEwIO+G/xFvEz9yQBogqQD8UNAQab+xHzGfAC9CP9ige5Do0PowmF/5H1GfCC8Tf55gPwDGYQwQyNA8T4FPHX75/18f9UCkcQLA92B3r8+PIX747y5PsNBzIPwxAIC3gAqPVM7zHw+vdMAzwNchERDokE+/hv8KTua/RI/4EKMxFqEHMIwvxt8vrtY/E0+yoHDRD2EQUMygAo9TfuBu9G92IDFA6oEhQP4AR8+FPvbu2t81z/Ygt6En4R0wg8/DzxqeyQ8EX7HQh1ES0TeAw9ANfzuewO7kz3awSrDxQUqg9SBAT3mO097JfzdgAzDTAUTBJSCJ36NO8n60rwZ/wtCocTTBQXDH3+efHP6n/tZPi5BioSnxWDD30CSfQw60brj/T6AisQQhZ+En0Gh/c87KrpA/EU/6QNOhb4FF0KE/vh7a3o1+0j+7AKkxXoFgQO0P4I8EroGOtE92wHXxRLGF8RnwKZ8nfoz+iN8/IDsRIoGWAUagZ59SPp/OYQ8F4AoRCHGQEXGwqR+D3qnOXY7MX8RQ54GUIZpA3H+63rpOTr6Tr5twsNGScb+RAG/17tBeRK58z1DQlbGLocExQ6Ajjvr+Pw5IbyXQZ6Fwge8xZWBSLxi+PV4nLvvAOAFiQfmhlJCAXzguPr4JHsPgGKFSEgDRwJC8j0euMl3+jp9v6xFBghVh6KDVL2WONv3Xfn9vwUFCEifiDCD4n3/eK42z/lVPvSE1cjjSKiEU34SuLs2UXjK/oNFNUkiCQXE334HOH715Thm/ntFLUmcCYEFOz3Tt/c1UDg0fmgFg8pOChAFGf2vdyN03LfB/tYGfErwSmKE6vzSNkj0Wnfjv1KHVgvziqGEWzv29TSzozgzAGpIiIz8SqxDVPpf88DzXnjQwiPKe82eSlbBxPhecl6zBDpfRHiMfs5USWw/Y3Wg8N6zoDy7R0HO9k66hzR7yDKJL/71CcBjC1vQyE3Qg5H3Uu9Nr/B4i0WDT/QRysrUPf9xsCzbsj8+j4xYU45Qk0Sh9dXsem0V+FxH7RNVVK0KRrpxbO+p9/Mmg8NS0Ndrzql9fW0Pp79vxUIJE0KZoNCDvbCrf2VBL95Ef5aoWwkOXrfFJlRleHY7jfbcbJdNwjhrM6Mmb+kIH5ormHkEbC2RpZoyJUjs15CTH3+qbY1rhTo/jCYTL8no+XevvHQ6AcHM88veQUU29TTDPKDGDEmYxJz8YfgDuwRB/0YsBNR/tPsoO3z/SYOdhCABBb2xfET+ncG6QuRBjz8UfZc+bsBqQdaBsD/Hfop+jX/XQQ0BX4B7fyB+xj+BQLGAxkC0v7t/OH9igBwAgcC7v8h/iP+vv9jAakBegAG/5H+ZP+kADQBqwCg/wX/U/8sAMcApgD7/2f/Z//r/3EAiAAnALH/i//O/zQAYgA3AOL/sP/J/w4APwA1AP//0P/Q//n/JAArAAwA5//b//D/EAAfABEA9//n/+//BAAUABEAAADx//H//v8LAA0ABAD4//X/+/8FAAoABQD9//j/+/8BAAYABQAAAPv/+////wMABAABAP///f///wAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA==" type="audio/x-wav" />
Your browser does not support the audio element.
</audio>
fna = eventname+"_H1_shifted.wav"
print(fna)
Audio(fna)
GW150914_H1_shifted.wav
<audio controls="controls" >
<source src="data:audio/x-wav;base64,UklGRiSAAABXQVZFZm10IBAAAAABAAEAABAAAAAgAAACABAAZGF0YQCAAAAaA2H8qfcy+RQAPAekCdwFfP749wj24PmhAfQIDwvpBXn8YPX69an9IgbyCP8Ey/6D+1z8qv7I/+r/6QARAw8EnwG0/FT56vrUALQGDwjLA7T8SvcS98T8pQUwDPEK9ABQ9P3uy/YWBx4TbhBxAOHvB+x0910IqRHKDcYBFvd+82/2fPxcA9sJXQ0ICvD+sPED7N7zPAUBFDgV1wem9ZbrBPBr/pcLmw5PB1z99fjV+6wAOQH8/MT5Xv2sBoYNHQoa/Tzwb+4b+p4KRBOjDZT+2vF68Ab6+gVlC9AHAwDP+jP70f5VAd4ALv/2/q4ARgLTAdn/n/5e/7cAQACW/X77ev25A5oJ8wgHAJP0KfAE+GsHaBJ6DyoAnfCX7XD50gnaEEUJsvol8lL2XgJQCxMK3gD69w32K/tKAoEGoQZqBFYBP/1n+Mz1ivncA1cO8g9cBWv1XOyb8UMBUQ+LEXYH3fnf8uD1H/5aBHsF6QMjAyED0wAQ+9H1MfeUAI4Lqw5LBsD4JvF49UYBHgpMCYQBPPvZ+8IADgN7/yL6D/pMAdYJ7QrmAbb1R/Fj+aUHsg9YCkX84vEJ9CcACwtkC/sBQfj29iT+ygU1Bo//cfn8+koD0gnaBsz71vJS9RUCwQ13DX4BC/U483D84wb3CIUCrPtz+7QAXQTTAQn8+fm1/sIFugcqAkf6q/em/CoEMQe1AxH+zPvs/bcAngBb/rz94QBYBWAGzgGE+iT2a/g+AJQI8AvxB73+wvWR8nb31AGMC6sOEQm4/Rnzuu9v9gAEChDREekGgfYN7UXyzwFSDl4NPwGs9vn3mALGCSEEOPbR7ib4oQyLGr4TA/vy4hTf8fP8EnUljR3UAPzjVNvm65cI8hxeHAMKXvSN6QHuoftBCDINYgoLBE/+tfrs+N/4Y/u8APYGagpvCJsBd/ky9H/0sPqdBOIN+hAtCj/7kOzU6NP07AlZGVEXEwV98KXoi/HVAU4MhQu2BD0AbwB3ALH7u/TY88/99wydFJYM9fm968nt7f3ODQ4QcARu95z1b/9XCQIIEfym8Tz0DgNaESUSGgSZ8ofro/OBA9kOuQ7HBRn8qfeC+CL7Wf02ACsFQQptCrICz/aw7/jzYAHIDaAPIga0+Sn0S/h4ABYFxANNAEL/6ADsAR8AQf23/Fr/bQK+AhoAY/2D/ZIA2wNBBO4AGPxv+Vf75wBSBp8HwAN//UP5m/mC/ewBnAQ3BQcE2gD4++T3m/iy/xAJ2Qw3BgT57e+I8xgCIhDOESYF/PPg6xLzwgMpEb4RHwaG9/fvGvMW/f4GAAwmC8IFq/1Y9cXwNvRQABMPIxaGDqP7Vep253b1JArSFqsTyQSO9TjvFPMK/FoEcAkMC7QIrgHl91LxJvQuANEMig/BBff3QPL2+NgEngrvBar86vfv+kIBugTFA3kBnwBjAEX+cPrJ+O38hgVDDP8KZAGt9QDwe/R/ALkMwBFFDOb+HPGN69TykgMzE30WJApm9pPpGe3W/ZIO4RIeCd76z/Oz93EAKgWzApr9k/xsAVoHqAdVAH/2g/Li+McFew8UDiYCjfRi7x72TwNfDdYNYQUt+jbzPvRo/AwH7w1YDEMCc/Wc7nLztAHSD38Tiwm9+PbsXO5x+7oKEhKWDTwBJ/Vo8Fv1nQDsCn0N4wZl/O71g/dC/tUDswSQAh4BXgEBARn+PPpq+en9cAV/Cp4IJQCG9qny1vf4AoEMwg3RBSv6sfIg9P78HgcSDDsJ+gDB+Jz1Ofn1AJEHoAicA138WviE+tkA8QWNBVEAK/vA+jr/UQRzBdIBrfwf+tj7cwARBQsHzwSr/rH3FPWG+twF1w4eDTkAq/HD7bP49AkdE2wMr/sp7yvxcf+ODdUP5QQ39sLvW/ZfBM8O+g37Ajr2zPAI9r8BsgtODeUF2/ry8/b1Qf+3COcK8ANx+Xn0CvomBj4O9Ak9+xzu+O48/6YSsRi2CpjyiONY6ncCLRmmHF0K1vCj4/XrPQIrFU8XlQge9W/ryPEgAlkPZw/1Aqf0e/AF+kYJFhEcCnD55Oyn74MAPRIdFkEIV/M56AnwXQR1FFYTtQIv8WTtevn8CY8QXQh8+QbxtfXLAv4MPwzyAe/2wvMD+scDLQnmBkYAdvul+9r++gBvAFL/PgDAAn8DPAAj+3P5Rf5+Bn8K+ATl+IDw0/SmBJoTyhORAp7sZORT8pgMXB7LGKz/l+Yc4f/ytg28HOEVMADi7FDpqfW7BvwP4QyKAr/5hPek+uT+lAHdApgDVQMLAVz9BfuC/C0BKwWtBLX/dfq/+aP+XAVpCP8ESv3g9rj2b/15Bj4LAQgD/+f2evVC+5gD0AhFCC8Dpvyn96L2I/tABAkNUA51BIz0e+rI74QCbhX6GfkL8/Tq5NXma/mAEBwd4BaGAQfrt+J47tAFtxeRFwgHLPRF7S71ZAIHCbcFK//I/X4COgZGApH4vPJn+IAG5xCNDWX+RfBs72/81guGEBkHOviV8CP2zgNCDjYNrgG19BzwFfc5BB0OZw7LBW36APPq8n75TwPFC38OUwlL/n3zu+/D9fkBwQyvD38JPv5j9ErxuPbhAVcMJw+LB/n5K/At8lj/vQ2WER0HSva17Fzy4AIrEUcSEgZ89r/u6fJg/hIJbw2MCsECzfnV80n0vPtVBlQNrQtCArP3ZfPk9zUBZQj3CLMDC/1l+YD6J/85BDAGJQPI/Cr4GvpKAjgKIwqSAPL0u/G1+qUIaw8yCen7ePN69qAA4QeBBsL/N/u5/GYB7ANVAhz/Z/2c/SX+dP7m/1IDpQYTBikATvij9M34bAKhCoEL2gQh/KT3UfnN/YcAegCYAJcD1wc2CHoBxPYZ8NbzyQBiDu8S+gr5+0vwnO9i+b4F9AsrCdUB1Pzu/Af/j/5D+9v5i/5GB2YM4AcS/LvyWPTO/9MKPgu9AJH1GvXNAAsOYw9ZAdTuZeiL9RoNPRw/Fmr/ZumI5PfyRgi8FKQRpgTz+Kj1k/l4/qX/yv1n/dsBgQksDt0JXfwT7Q/nHPFsBzccYCDZDgrym90y4Pf3oRPFH48VBP/C7cDs5viyBc0IPwL7+sn73gRpDZEL3P2y7WHoNPR+Cq8bpRroBuXtcOFP6kUB6hTFF6IKJfqM8sD1iPwAAFQAKQL9BhcKzQUH+x/yZfOw/s8Kxw3JBWH6KfVu+UECzgcgBpn/5/k7+Z79tANbBy8G5wD0+lb4t/oMAE4E9gT/Aj0B5gBHAE/9FPnm9wP9RgbbDAsLnwFp91Hz2/YV/jEEewfOCEgIIASQ+zzyOe8f964GxRO1FAII4/VP6o3snPoxCxwUhxBlAyP1Uu6Q8pf+jQoUD+IJBP/n9Tr0Ovr9AmcIjgdIAvH80vow/BP/TwH5AYIB+AAEAUABagDO/c76rfqS/zgHPAtvBsX6W/EJ88H/bA1tECAGfvfy8DP3iQOoCisH4/1n+Nb7VgQgCb0EIfpS8vD0iwFCDy8TDAk+95Pqj+zm+3sNKhXTDmwAJ/Sn8K31af7cBWwJzAj2BIj/gvri99v4F/2kAsYGaQdaBHP/evtc+hH8/f5YAVQCPALlAe8BKgJjAVr+oPmp9sH5hwNCDvUQHAcX9kDqMu2L/a0P0xayDvb9UvDP7RH2RQLdCjwMrAcKAav7yfgy+L/5zf0IBA0K4wvUBm/8uPKH8EH4UAXqDoYO5wRZ+dTzEPcR/wMF7ASzABP+1gB8BtAHEABS8/TsyfU9CrwaCRh+AannZ98g8NkM1B6EGHsA/+pt6Bb4gQonENAG6fl+9tX+CQlvCUX+p/Ev8Bn9yQ6nFl0NI/kR6WrpEfqeDvgX4Q95/RTvoO4z+vUGPAtgBnr/F/30/uP/GP0u+uz8dgUBDPEH8vkE7lvxcQSaF9gXegE45sbe8PPxFIMlNBd79infhuM8/RUVnRj6CMf2PvFq+QYEJQaC/0D5nPs8BYcMPQnX/IXxAfHS+zEJEQ9wCowA4vi09kr4Pvuq/1UGtgwADa4D/fR+69PvmQA+EngXzguO98Ppruyx/VAP/xMDCTb4Tu929BoCsQx7DNUC0fdf8+P3kQHaCcALgQaE/Qv2N/Ty+KwB0AnxDPMIZP9S9erwnfU5AaMMQBBbCWr8OvKq8Y761gVKCxQIoQAB/CX9awD+/7z6hvbL+vEHRRQAE4UAh+iX3tTtlA0+JrAjNQZa40/VX+YkCXUjxCKnCX3s0OAN7e8EuxSXEWoBGPSm9Pz/Swk0B5D8xfQE+G0DdwxIC2wBO/fU8xL4/P8lB/EK3Qk/Awn59PCp8eH8FQwuFCgOhP1R7ufr4ff9CJwSaA6AAJLzrPAW+QkG1A20Cvb+iPOd8Xr7BwrUESYMtPz07hrtVviFCNISMhF2Bfn27O0y7xn6egjYEXQQWgXW90jwY/Jd+xsF1wolC+wG2f9m+Cv0TfZ2/rQHqgvWB+H/Lfrv+d/8v/6D/gL/nwJZBz0I0gJK+uf0hfbK/QMGrAqJCRgDo/pa9UL3Qv/aBoEHSgFY+4z8uANQCIoDYPhe8U72PAQCEEYQPwV29zHw6/KL/OYGsAx8C0oEFvsa9dH1gfyOBMMI8gYsAdT7V/oK/VUBzAOlAvv+9ftf/FcA9wRiBuICj/wJ+PT46v6QBRQINgX+/2/8sfvl+7D70fzsAbYJtg2gB7v4duvR6278UBJzHKsRBvnb5HDk9vewEJEcsROB/YDq+ue+9hcLxxV1DxH+0O+V7y38CArEDeQFAPvq9qv7wQKGBO7/Lfve/JIEdQrhBtv6f/Aa8vP/Dw+6EvgH9fdk74Lz8P4OCKgJtQU0Abj+M/0W+2f5Evs+Ab0IqwtuBp776fJC8/n8+AgvDtwIif0t9cH1qv2uBXkH2gJL/WT8eABTBJICpvti9rT58wTGDgQNA//q73ft9voeDdMTIQke92/uefabBgcPJAh0+Znx/fcgBoQOvgnh/K7zNfVT/moGKggDBTYBiP7k+zz5dvkh/8EHKQwCBy37jvIy9SABfQu3Cg4Ag/a/9x0CQgroBsr6PvLU9mwFwhDuDc3+Z/AM7037AgrgDl0H4Pvv9mr75ALmBIr/HfmE+fYBRgtTDLkChPVk76j1zwMgDxwPCwSy9nLxAPhKBI8Lpwet/Ff1CvmfBAYNiQk7/IjwK/GN/hYO+xLvCNj3We2W8ZgA6w1AD8sEPvjM86r5TgM3CEkFd/43+rr76gASBfIE3ADh+4X5jfvwAEkG4Qc+BG/92PdQ94T8UwSLCVEILwFI+av2VPsnA20HzwRR/j76MfzvAfQFoAQi/+L5x/iZ/AIDOQjwCP8DfPt39GX0z/zCCF8P0Arl/YzyqfF0+4sHmAwRCCf/8/h9+Ob7FgCfAwwGBwYUAmb7pvZv+HYA0AioCkwE2frW9eH43gAEB8YGaQFE/KL7Iv+dAmoC2P7R+xP9WQIUBy8GDv8M92v1rvyaB0QN0Qi3/Yv0uPPk+nIEgwprCvAE5vwf9nb0wPmaA78LFgzgAyH5LPSi+CsCRAjnBR7+EPk9/AEFmwo0Btr5xe/u8ccAkxF7FjAKIvVQ53zrYv6TEUoX5AyS+9rvA/AX+V4D+wgfCV4GEANh/3/6XvWx82D5BgbQEvQVTQoB9brjhuO/9gcSVCNLHi4F3ueC2cHjIAAoHLMlAhdf+triS9+G8JwJqBm8FxoINfdg7xnyyPnAANoFYwovDdEJB/5H7+Ton/IcCDAaVxoQBzbufuJ07JoD0hVzFsAHEPdq8Hr16/7cBEwFbQN9AlwC0wAe/Yz5gvkP/oMEXgjsBloBivvT+OL5NP0ZAccEogcmCE0E1vtw8gTv/fZnCHwYARorCAPtDdyh43EAfB7QJ5AVM/W/3Ube4fMrDpgc/xisCDT2rup66uP06wTNEuwW8Q3Q++vqaOaN8oQIwhnNGb8H6+9p42Dr1wEmFrcZ9wrI9ajpDO7x/RkNphFdCtP9i/RX83b5dgJQCbIKDQbA/Vn2ifQr+k4ETgwnDCsDUfdO8QX2UQINDQMObgSg91LxJfY/Am0MJw0iBFb4hfKZ9u8Augk8C6cFvP1s+LX3uPqR/3QEqAeJB4QDK/3u9xP3Ofu4AZUGfgcNBXABJv5Y+yr54vgs/PICGQrgDDMIg/258uDuXPUIA5YP0RJjCsT7gPBr7wn4uANAC6wL4waPACf7lve49s751wDPCJoM0Agq/+P1KvN5+M4BBAkfCmMFa/6J+S35rPwPAYEDSwO1ASsABf8y/lb+LQCzAvkCHv+W+Vr4Lv86Co8P5Qf39ljqHu4pAaoUZxgOCUbzsOja8H0DsBDQDrcBu/Ve9A/9OwdYCncEwfrA9OL28P8oCq8Oigmg/NHvzuzt9xMLKxhzE2f+7uhk5T34SxLdHCgOFvMV5I7uRwg2GV8SmvsA6xzvtgG1D8cMgv7B9LH4TQQWCpYDvPc584H7egl3EPgJIPuk7/3vbfuhCSwRkw2KAej0ve8w9UABbQvWDHEF1/ub9/36aQEjBKsAEPv3+QsA8AiyDL8GPvr678PvifqJCfsSrBAbBFf1k+028UX9rQnGDlwK0wBs+Y34pfxZAAEAMf3V/LwB5widC6MF2fml8DrxgvsxCOEOlQzRBAz90vev9N3zFfgoA/YQqhdUD3D6b+Yb4o/xdwoAHHgbEAti9krpHene814DjBCMFbgPlQGw8p7rOPC//OsIYQ6YDA8HoACj+bPywO/r9Q4FWhSsF0cKm/ST5rvqmP28EHoWDwyU+h/vBPFe/UAKWg5UB/b6tvLr9AgAdgsLDooF1fg38oz2TQEqCZgIKwLv/AP9AQCTAPX8YPma+y8EeAwgDEgBf/MI7jL2OgaiEWsPrwHu8zrxufrUBkUKugLw+Nv3bgE3DHwM8P9/8Kzro/bTCSgX8BSgBDzxeOdc7YL+Vg89Fe8NTwAK9rnzvPY4+kX9AgNVDCwTgA58/Azo7eHk8dgNiiAvG2kCYeow5czzGQc7D4EJAgAt/TgB6QMc/y/2svJv+vUI4xKaD6wAxPBc6yP0iwT0ECoRDAZF+GvxIPVO/ywIGwreBNb8x/dY+bQAgQgMCooCq/ZG8Hj2SwaDE1cSOAJc79PoxvM7BwUUXhEuA1b1SvFy9/kA4wY7B3EENgER/tr6Ovnr+wIDvwmuCQcBy/WC8d/46AaZEPwNxwDi8mLu+fWrAxMOLg99B1P85PNG8hH4NAIaC4UNCQhI/lT2X/Rn+HT/NAZACtsJTwRw+wn0WfPM+gcGkQ09DA8Dc/iN8yf3/v99B6oIoQMu/bX6ov1HAogD/v9s++v6mf9iBQ0HQQN9/Vv6YPt3/u4ADgKgAugCHAL0/6795vy0/bv+Nf8fALEC3gVLBo0Bifka9In2jQCSC1EPWwg1+zfxjvHI+04IVQ5OCvn/7vbn9Dj6cALuB4UHKAL9+4D5W/z2AVoFUgOr/Qn6s/zTA1gItwQ3+9704/i7BGANnAnD+5DwdPMfA8oRZxG2AC3tyueK9skOYB3mFeb8xOTN30PyDQ9vIT8cawPN6ALfKewXBkMaLxuTCQvzqudX7mwArQ98EYkGA/lx83D44wFbB04FHP8W+8r8PgIABvQDFv0T9873GwArCp8NkQaK+V3wPvLR/ZAK1Q8jC6wA+vZt8h/0K/uABS0PXhKSCpD5F+ml5a30NQ6SIBcdUAQz5wLb7+i4BpYe+h+jC83x4OTD61f+oQ0REKcH9v2t+oL9RgBM/nz5Zvgh/xYKDBA5Cj77Ku6w7ef62wuEE2IM0vxe8UjySf15CCALfARR+4z3w/uJA5IHHwRo/Nb3Pvv0A78JYgb2+8/zOPZhAjcO5Q6vAhHz6+yX9WQGRhKAEEoDOPUp8Nr1CgAuB7MIFQfgBEEBivoz8yTy4futC0IVVQ8X/ajsIusn+acK2BHaCsP9IPag+CoAGQTrADz7pvq3Aa4KTQy9Akz0Fu2W9DQGEBRkEvsBK/DC6zf4dwqJErIJgvgB7/P1nQYUEUQLmvre7hrzEQOED/4Mqv7J8pr0lAFfDEYKov0g8/v0JAHrC8ULCQJs+ND2WvwDAtgCiQAaADMD+QWLAwr8WfXm9Yf+SgkPDusIU/2q8//ylvunBs0Lugep/lf4SflL/zcE7wPW/8L87v3iASUE2AHl/Gb6k/31Ay8HPQMi+7T2FvshBbsLPQj2/GPzwfPc/YoJ3A03CJj9zvVh9Q/7EwJgBvYGGQUiAob+tfou+Pf4yf3KBE4K+Qq8BXz8jvNC8Cr2wwNLEbwUrwmg9m7pkuwB/koQbBUeChn4yO248vcBmQ5SDsIBxvNR8FP6OAlhEBUKIPwm8m3ziP3MBx4LvAYe/4P5n/gG/FgBjQUjBoMC4PxA+aX6fQCZBhgIMwMA+5n1uvfXALYKew3DBUz4Ze8I84wB2g8dEgMGI/UB7a3zEQPHDqgOpwSJ+bj0LPcE/YwCuQZUCZEIKAJh9/LuAPFt/7oR2xlgD9P3CORy44T38hGyH44XcwAE673kQ++LAQoQRBSfDlQDJPeb7h3uoPcqBwYTWhJCBfn1VvBM954CVwdnAgv7zPqEAyINNw0GAbzwE+kZ8WoELRYeGjQN2vc66FzoI/d9CQETHA+RA3X6N/nB/Pj9E/o/9nv6PAhPFjUXiAU369zbaeV6A9QgRyexEb7wbd2N5BH9pREYFDcI+/wx/KEB8AH0+JzvwfJiBB8XrBmaB7juS+Mg7joFdhVbE5UDs/Sv8Qr60gSXCUwGsP4t+Lb2kfvNBBsN7Q1UBAf1t+pk7nb/zRJrGgcQTfpp6O7mX/bmCroVkxDRAfj1o/T2+kkA2v9a/b7/9AcoDlsJ+fnR6xXsdvxPEIAX1ww7+uruyfHa/CMFwwUCA1oDAQdWB+v+ffHF6v3zvglaHOobLQb36VTc9ueQBEcdxyAFDtXzruQE6cP6EQx3Eh0NnAIz+vv2BPgp+wT/5gINBmkHBgacAVL7FPaD9Ur74ARZDG0MwwSJ+oL05PVd/M0C1wXrBUEFbwSrAbL79vQZ8wn6MgfQEUMRhgQD9I/rMfFpAOINeRDsB/j7YfVZ91T+GwTsBKABE/6S/TwAMwNHA+j/yPun+gX+iQOXBhcEc/0l+H75rAFuCoQL/AEK9CbtuPT8BtQWlBcRB9zv8uF+57P9chaIIWkXaP6e5gffhOv/ArgWVBwYE8oBCfFV50LodvRXCAAb9SB/E673690P2BfsIw6WJwknEw3m6+DZqOGp+xUV5h0WE5b+tu5Y7F32JARFDKEKQQJU+o74Jf1LA5EFbQIk/Yr6vPyCAaoE3QNuAKr9mP1k/48AtP8V/m/+xQFyBRkFW/9/+Db31f0PB3UKuQQs+4/2hvpnAnYGtQNX/qz8QABDBNECw/vY9Zz4XgQsEJ8QZAL57kLmQfFECRUcfhoBBbzriOFV7YkFMhiuGEEIAPSG6l/xoAHvDTUNygH09rj2qgA1CsIIjfxT8Snz7AFtEAERIwPq87DwGPrRBJ0G9ADZ/Q0DhQrmCCj7A+ya6lT7UBI1HQ4TnPsw6JblavO6BoMTRxQMC8b9ifLi7Q/y2/3FC7UTwg9GAXDxbOva86sEdxH/ECgE7vSc7of1NAScDzwPTgOl9CPupvRxA9cPGBGSBuf3Q+8l8sT9nAnzDTYJIgAt+YP35flz/cwARAScB4MIQQRH+9Xy9fFv+wAKGxPnDkD/UO9F63/2hAinE+YP/wDP8oDvEPjRBGIMowp0AjH6yfYu+ej+bAQfBx4GHwL6/Cb5z/iD/HACNAfuBzoEWP6c+Wz4Ffvk/0AEMgZhBcQCgf9I/Nj5fPlN/LEB/gYKCXkGpACB+sL23vb/+gYCOQm5DKMJqACD9jTxA/RT/dQH7A3PDJwFLvzR9HzyIfad/qMIRg8pDscEA/ir7xnxGfvZBjINmQvcBMX9XfkO+Br5EvybAHcFfgj8BwgEZP45+Sf2Vfag+r8C9AspEakN9ADS8BjnmOvO/VsTAB6+FZX/i+qk5GTwhgPvDwwP8AUD/3b/lQKy/9/0a+sS8FoFnB1OJAQQ9Owk1ZbbAvzQHS4o4xXk93blDelj+ucI/goyBKf+EQASBR4G7v/f9rXycvcgArQLgw6VCRsAzva08Rrz9vpcBs0PZhGvCIn5J+1n7NL4LwrnE+AOqf/k8oDyKv3uB7wI1/8x90D4dgLgCyQLnwCa9R/z+/lUAwEInQbwAsAAFgBy/sr6qfcW+VsAzgnADlUK2/0P8W/t9vbTB5ATkBCVAFvwW+0n+sEL3RIoCfL2B+wT8k0EpxOdE4EEofJt67HyCQHiC0QOVQoLBK78afSg7pbxxv8mEj8bIBJC+1nmVuLp8fwJgRqnGW4JBfUI6dnrO/r7CSMRwAw0AvD5WPg7+6n9vP0c/toBlgfMCZgE0Pph9PD2EABtB/cGxgCD/Oj+cwQqBdr91vRd9Jb/vw2QES8G5vQU7cb1zwZ4EGAKNvv48W731AWNDj4IKvjV7Z30LggJF+kR2fpV5cDlJ/6LGqch2wsc647bdeprCuQfARqeABvrEOq1+coI8Qo1A5b9hgByBkEFvfo48HrxWQCqEc0WuQpl9gLpxuu0+z0NPBXZD5kBhfOv7fzysf+KC+4OSwiH/Uv3ifn3/48CPf7R+Dr7CAdgEisQ0f2H6DDj6vT+ENQggBcA/ermqOVm96kL2hLYChn+Dvj5+k0AWwE4/jX84f7uAx8GQgNR/tP7GP2J/z8AVf80/zMBuwMPBHUB3P2C+/z69fvZ/iYEyAm5CloDxvZ07ovyiQEXEHsSLgdG+PvxcffAAAoE/f+e/HkBuwuRD4MEWvA75DvtygYJHcYdjgjL7iDk/u0wAQUOHg4FB08BVv8y/U/4evT690kDbg6/D04FM/d38KP1ggFGCsIJygHj+cH45v5GBnUHaAAd99n0R/3PCd8ODQf8+Fbxiva4AhMK4wah/ij7rP94BeADpfo+8zL3VwWYERIQ0ABc8HPstvflB80P7gr2/9n4avmY/bH/zf6n/gUCnAYvB40BnPkM9vL55AFuBxQHwAK6/gT9X/xX+0D78v5jBmoMTQqk/q/w3Os39v0JuhhDFvACQuz74lfuVgaWGUcagAj48UvnLO/IAQYQFBB7BGH4T/XV+4YEUwdTArH6m/cF/HkEUQoSCXYBYfhm87X1mP6LCf8P2gx3AADyruti8/cE8hOYFM4F4vK86m/zCQWcEEcNjv999HP1DABYCaAIRv+v9vD2cf8lCIUJOQOT+wL5W/wBASkCrv/c/XcA/wVOCLwCB/hT8Q72+APRDx8PMAJa9KnxmvvRB08KNAGS9lT2HgIBD5EP+gCj7pXoI/XtCs0YXxQcAmDwAOv+8mwAlwrdDTsLtQTj+43zhfCY9ugDKBAmEpIHrff67TjxWv5gCzIPCAgM/Fj0TvbH/8wIygnIAZD3TfSo+xYIDw/wCQL8JfDy79T7xQqkEdsLd/6f84vyX/rfA/oHeAXrAGX/MwEQAmv+N/jW9dH7egcXEPQNLgFE8tTruvKcAicRFRX5C1X7D+3P6Rj0dgb2FVQY5AqD9Ufm6eeM+eoObxkOE90BFPKD7NHx1PyoB2cO4A5KCJ78i/Er7sn1NwTVD7YQ6gY++nvzffU2/N8BaAS6BUsH7gYnAeP2je+B8wEDKxPoFe4GUfEB5wHx1AbBFYYRI//L79vwzP9FDRwM4P0l8UXzQANHEoURTwBc7YbpcfhCDYYWsg3a+xDw2fF0/MAFHgiIBa8CFwHM/r/6oveH+REBtQntDHEH//vi8Vnwmvl2CNYSeBDTASTxKeup9PoFVxGwDiECJfej9az7bQEZAv3/NQDcA6UG/wOU/CT2S/Z6/asGfAv5CEsBgfnF9Tr3ivyFA8sJegzNCI7+W/Js7Ovy3wOmFPAYbwzz9gnnRufb9hMLhhfvFZgIfveg6/3q4PVDBpYScxPgCHL6l/Gg8lX64wEcBS0FngUvB0wGRv8n9GntHfM2BAcVBxjICb/0p+hK7ej80wrjDo0KPgSU/y77hPW88cr1JwNeEnUXRQwL97jmhOcq+e0OVBnYEV7/HPAw7l34nwSfCSwGZwCA/rcASgJ5/xD64ve3/NgFvwuvCEb+q/TQ85/8GAgfDdYHhPz386b07/3RCDgN6AfH/P3z/POl/FoHGAzQB7D+QPix+Jj9UwFvAeEAaANmB1YGs/zC8PXuWf2DElcbtAxo8NzeIunGBzIg0BwvAXPmmuO8+NkQ8RbUCF32N/DL+AIFYgmhBBL+Hvwx/qH/iP7w/RsBLQYkB8sAofd59Hz7DwewDEcHQPz39Vj5fQGtBb4Cvv1f/QkCkQWYAhv7wvbK+k8E7QrFCLD//fbs9Ez6IgMWCjMLVgUh+7/yv/Kx/EYKGxEyC6L8tfCh8PX7SwlgDl8IcP2f9gv4Xv44A5YDrAEQASQCAQKd/gv68/ix/WMF/gl7B2P/pvfi9Rj7HAMGCLwGNQGP/HH8uv+zASf/cPrY+dYA7ApUDmAFkfU/7KDyTwRbEr8QogFC81PyGf6zCSkJSP3K8sT1dAUNFOcSKQDA6XXiHvIbDhchERyWAsbn5N7L7NwFgRgfGoEMzfmu7PLqQ/RUAysQqBO1C0H9YvEZ75/2HAKPCmEMUwhgAXH61PWc9eX68QOhC1QMqASc+TTzHfa//24IvwmtAzb81fm1/dECGgPh/Rn5jftKBQcOBwy5/RXtmujb9ksPaR82GU7/BeSW24LsywpkIaIhuwxG8Vjg5OLG9UENQxwaG+8K7fR15VPlkvRVCu4ZNhrcCtD0aOWS5iX49g6pG3MV4wC57OXmfvJOBkMUZxNoBaT00OwP83QCbg81EGQEl/XJ72P3dAXYDfYJTv7I9XH3dACRByUGIf7D98f5IwPIC2ILhACC8nXs1fSQB6oXMxi+BrjutuHp6ZYBSxexG3kNJPlm7UvvuPgFAW0FrwggDNgLMQNd9JnpHO0L/3ITEhu6D5356egX6ZX4HQvaE3QOrADZ9GDyY/mdA0kJsQbf/if5B/vqAuIIvAW4+vPxj/XdBNsSUhEt/4Xrs+jB+msSdRo7Cw7yP+X572MI4Rh0E7X9/urt6jf8FQ/1E34I8fcV8Kn1DAJ2Cj4JWQFP+kz5kv18AjYEegKu/xb+Mf4O/6v/2P8iABoBiwJTAwUCLP5b+Rn3zfpsBJQO3BBaBqnzEOYh6iwAMhk+ISIQ6vE43sXky//TGAgc8gjM8XTq3/b6CC4PCQVG9kHy5vyRC/UPsgUD9t3uSfZKBZUOowpD/qT1jvjuAhoJ0gMh+MXySPtqCwkUbQtX96foXOy8/9ASjxZ6CbD3Pe9D9EX/6wXIBBEBiAFVBkwI3wD98vPqgfO8CY4cgBo/Auflstwe7xgPVCP+G2j/a+S/37/zhg9UHeATpfzQ6knrOPv8CzEQaQYs+eP0xfxGCDMLQQHR8gXuyfkrDvwZnREL+onlYeRI92YPMRsdFMcBwPGu7BryRfwTBgsNXA/PCkP/1PF760Py/wJFEvYURgkp+ATuE/Fo/SMJjAwzB7b+bfnl+Sv+VwKpA+MBwf6J/Of8MgDPBEwHWAQ+/Hj0Q/TX/d8K3BBcCjT8VPFJ8Yz6XAUFCy8KVwUZ//f4+/RR9nP+jgl9D0QKiPy98KPwify/CvcPzgj6+7rzHfUJ/aAEtgfwBrwEnwFe/KD1LvLH92oGHBVSF+gHue9l4JDmNP9qGQgjlhUc+mnilN3W7msLtyAaIJQJ9uzg3gPpfgJDF4EYBwgX9XXujPZ8A4EJPgUl/Qn6n/6PBTEHNAEA+ZH2rPzZBXwJNwRt+wP4aP3ZBRoICQFH9+T0Ov09CQ8OTAfu+l7z9vUJ/2QGHgccA73/2/9UASwAjftq9wP5dgGKCyEP8gfR+Znu5+46+yULcBNuDg0Ah/K57jX2FQPCDJ4NBwZ3+8X02vVK/YcFDQlBBgIA1PqW+W/8dAGYBcEF4gAO+mb37/xdBzsNPweT+M7tCPKuA2sUIxW8A/7tZuYc9AkMzxl8EXv6ROnW7PMAZBJ+EeQA5fF88s3/oQpCCDT99faS/DkHSApqAVz1rvK4/D4Kzw7PBkP6SfR8+MAAyASuArX/IQGSBUcGIP+U9Lfwhvn0CfwUlRDe/hjtDunc9ZYJgRWXEQcC3PJP7t71uQLCC9gLWgRU+x/3H/oeAdoFOgQZ/sH5D/yBAzUJOwdU/qX1iPQY/FoGmgvICCwBgfoN+GH5qfzwAKYF4AifB8gA0Pdi8x74mwMJDRcMugBV9Abyf/zaCg8QuQZp9mDtC/RaBeMSSxECAr3xR+339tQFPw6ICyQCEPrD9y/6Bf6AAZ0EpAZNBWT/BPiX9fb7RwfdDcQIGPtK8DbyDwCzDhcSYQf29k3tG/Hj/q0MsxHGC2r/AfSF7wH0FP8NC1gR4Q37AWj0lO0I8vP+3AuTEPEK5P8M9/f0zfiW/gwDTwXNBa8EvQGU/UH6E/pq/dIB2ANPAsf/BAB4A6AFYQG69xzxKfbwBVAU7hMZA8Huoed58xYIqBRXEMwAsPNQ8vr6vQQ/CO8EV/8M/IT8V/8NArUC8QBh/oL9VP/nARoCQf+b/BX+RwPABmkD0Prw9Kv4LQSdDQ8MPQAr9ObxjPr/BQQLUgchANf7EfzU/Uf+AP5c/68CQAVLBFQAyvxM/AD+Af9E/hz+TQHeBqMJ/gRO+kjx+/GD/SIM6RJNDML8ju9l7gf6jQkSEfwKn/z+8cPz2f98C88MMAMW91TyPvjfA4wMUAyhA6H41vIZ9t3/9ggJC2UFOv3h+J76aP92AscBX/+O/n4AXwNfBBYCZv3r+Nb3MvzCBFwMrgyIAxr2Me6i8hcBIw9FEmMIbPm18OHz2/4HCLUIWQJT/KD8SAJ9Bk8D4flg8jT13QLAEfIUbAcG8qnlYu0fBOgXnhjPBUDvfuct9LAJrxXEDtb7Su3Y7kX+Zg6sEt8Igfnw787xOvyPB0ANNQuaA7/69fQB9ef6mQNSCkUL6QU3/e31K/Ru+WMDOQxvDakEC/f37kH0fAQDE4USHgEC7L3lGPacEYMhtBa497rcGdyg94saCyqDGjP44tyy21vz4hBRHzEXFQLd8O7tqPZhAEQD4gDTACYHiQ66DJ79B+pT4kfwuQxBI/4hbAiO6CrZj+R4AQQbiSDJEOH4Rekx6sH3AgeMDgsM0wNa/IT59/rA/W7/4v+ZAIAClQSnBHoBTvx3+Bv5lv5/Bb4IowWm/qz5yfoxAOYDzAEz/NX55f4TCM0MCweG+WbuMu+//PENbxbaD3z+HO6l6a3z8wTEEU4Szgeq+k/zNPTk+eb/vwT+CHcLdwgj/kvxDuxO9aUIwRe8FdgCYe0c5lfy1gfXFboSwgJN83/vEvgpBMYJHwbz/hL8l/89BFwDV/zl9Zn39wEQDTAPgwXE9tDtO/HA/nMNBxRIDjH/T++G6Gzw2AMfF6Mciw6M9D7gJOGF+M0W4SWfGR76qN4/3M70GhXhI0AWXvjX4hHmQv39E2cYawlr9Vzs+fJgAfYL5AxVBgD+IvhT9tz4Mv/XBkwL2Qg7AB33DPQ2+aACbQkxCe0Crftq+Kv6EgCiBIQFjgLk/ZP68/pJ/yMFSQhxBVj9YPU69GP8CQmvEGEM8f2b74/s5PeQCWcUbBD+ANfxr+1c9lcESw3nCwUDVPrg9837TwFkAwUBc/3v/NEAHAa3B8cCxPlp87T1hACKDEEQvgfO+Cbv2/IFAaEN0A2/Ac/0QPOU/s0LvA3OAezyOu+l+jALYRJTCm/6H/AY84z/hQqWC2ED/fls9/D8ngQgB0gC1frv95f84QR1CR4Gl/0O99j38v44BusHVQPi/Pz5k/zNAbYEjgJP/Rz6v/zOAzIJKwff/UL04PJS/BYKNRFeC6z8f/D776X6qQfTDZIKLgKl+hj3lvdc+6UBOAjsCpQG8vy/9HL0ePy4BtQL2Qh3AA/4UPSK98YAIAtLD4AIxvmy7bfun/1uD9wVfwub+BXsD+8E/sMMthB+CJP7m/Nn9WT+ZgcBCscEC/y49jr5xQFSCTUJ/wA59wr0Z/qgBS0NNQvgAHL1FPEE90EDaw2pDlsGRPpF8gnzS/tiBYMLNQvOBVb+kPfO81z1UP3qCBwR1A6tAUvyU+x59AMEsQ55Dd8DLfss+e378/09/Sf9cQFpCE0LJwUA+X3wg/OLAFMNoQ8oBkz5PvMy99L/kgXQBYkDIwIjAQH+Q/m89z792gYjDF0HAvwj9Mn2FQE2CRUI7v9h+Xn66AA6BQkDb/0p++v+ZwQqBdb/0vmw+S8AQQfzB0UBPfkz9+v89QTlB2ADSvzR+Uv+1QQ4Bj8AUviP9vD97gj/DfAHufpt8CLxnfy+CsYRLw1CAC/zrO3U8g8Abw6UFewP5v4M7FDkC+8VB3gcRB/+C4DvFd5D5E79ExfUH+AS4vr16CHoePY7CHARDQ4iA2H5YPa7+Tn/6wKZA0MCdABI/zf/BACzACkAhf57/c7++AEBBFUC9P0c+yz9ugJnBgYE/fxk97D4rgBTCXcLvQTT+QDzofXI/7AJ/wuhBW/85veK+hEAMgJn/478WP8gBzUMJAcw+fnsz+02/XkQ4xiyD637m+t96lr3OgfpDqALcQMo/vH9mf5t+3z1tfMi/FAM1RjVFd8BO+m13QLpogTqHVYjUhHU9Kbh4OOs95AN8hZSEKkBSvYv9HP5LwDLA1wDxAC5/jP/NwI6BXkEef679hL0ufpFBx4QXA1VADrzWvAJ+dUE3An8Bd7//P4dA5oEm/148kLvc/syECocyRLc+BTi9eAX95YT5SADFsv8zehr54j2kQjEEGsMPQKi+gH5Svv5/Y3/rAA+AvoDiAStAnr+1/nh9/L6YwLqCeELhAX5+RLx+fFU/c8L1hJ+DK/83+577Y35swmzEVoMNv8D9Wb0SvuRAl4FcQQuA6QCsQDr+zr3EfhPAJ4KGw6NBvv44e9r8qz+mgt0ENUKJv9+9FTwiPQ//14LHBJsDg4BnfFl6izxQQJSEi8W+QqJ+Ojrx+0O/LgLhhFyCjH9APSi9O382gVmCToGTf8r+XL3aftGA14KMwtcA7v2Wu5D8isCnBOnGCILK/NV4kjmZf1JFzEhOhQN+t/kBeKo8aIIFBl5GgMNbfgj6MTlbPM+CUsZsBi0Bz/yZ+c17ocAOhBaEjsHFvnt8s73lQFuB4cFYP92+xL9wwFbBCkCaP3N+uf81gFWBaAEiQBR/Mv6jPweAH4DKwVPBMoAy/s8+Hb5OACgCO4L+gXP+bLwE/O7AHQPqRJ4Bjb0LOsw80sF5hHyDrEAxPTJ9AH+jQU8BGP9W/ry/wMJnwszA531Ue4+9JoD7RBREhYHzvdN75vy6P1ECNIKqQXn/sT8x/91Al3/3fdD9JD7oArIFCEPDvyu6qDphfmWDJkTVwvO/SD3Jfqb/4v/Y/pa+Nb/9wyeE9UK4PZB54HpsfzDEaUY2w0W/EXxlfJ3+rAAqgKmA2cGtAjsBVr9lfTw8mf6XAV8C/0IWgFm+/v6U/7PANb/D/1R/J7/BgU9CDUGr/+++Oz1FfklAKIGyggOBv4A6vxh+6P7P/wH/Tj/iAMyCG4JnARt+6zzKvP1+vwFuwwICzYDovsC+cf66/z7/N78TwC5B/4NNQxhAN/wuehG79MBxRSAG0gRf/wo6jTlu+99Ak8SCheaD00B/vPC7XPws/nXBDgNuQ9pC8MBqfaK7/DwH/t+CF4QSw3oAUv3VvXi+1sDYgTc/pL5KfuTAw8MAw06BKT2CO1s7lz71QzlF5QU5AMp8GrmH+1E/xsQ1BRADIr+qvWS9an66P7n/wcAgAL5BmgJDwaK/fb0JPIi9/UAJwpwDnAM+QRC+jbwYOwc8zQDPxT9GmsRG/zz57XhjO2BBPEYux5ZEhT7AueP4lzwJgfrF00Yfwmh9lDsDfBt/RsKbA1XBsj72/Y2+/MDMQh9A1f6D/aU+xQGUAvCBYT6kvT0+ZQFBAyRBu75/fHB9q8Emg9+DaD/tvG470f7Kgp7Dz0Hx/mp89T5RwVNCgwEEPmZ9Iv7yQccDokIf/uR8WzyCP1VCfQO6gqNAEz2tPEk9R7/gQpXEMwLkP5S8R3uH/giCLgRUg2y/uTxQvHf/KgKCQ+DBkX49O9Y9GICxw9uEoEHr/Vd6Xzst/7hE74bvg6p9Q3kZ+g3/10VqBjEB8Ly1usM9wkI8A4OB7r5CfRv+rIF3gqaBXz7F/YG+ggDdwiABYL9ivhr+xwD1ge9BJf8Avc7+XABuAhQCTADRvvj9v/3E/1bA3oIYAonB6L+bPRL7530CQPCEScW5Avl+JfpRej49fAJoRe8FiwINfWF6dTruvnSCYsSRBA9BrT6p/KZ8G/1VwApDUMU4Q6//Y3rk+bb9C4NqBz1FXH9n+Yk5Ov3lBF4HLYQyfjd5y3qZfzCDyQWMwyr+svuRfA4/JsIxAzCB6L/BPtq+2H9fP1u/PH90AOVCp8LVQPL9QHtLfEkAe4RwBZWC9D3fuqu7M77MgyREgoM5v659HHzKfoSAycIIwcrAkX9H/vi+0f+KAHPAyMFkwOn/t34C/de/EYGCQ34CSf+uPJg8Zz7FgnwDhwJRf0f9Q72lP3fBBMHWwQtAIb99vx1/T/+k//VAUAEwASeAcv7YvcE+VEBuwrkDAEE1vVY7nb1wgbXE5wQwv5A7XTrMvvKDi8VSAla9m3tlvXWBWkOJQjj+rj0a/sDB6wKUwLS9nv0Ef7BCXkLkwGR9gr2eAClCksJ9Pzb8evzsAIrEa8RpQJL8A7qQ/XJCAAVshArAALxre6S+aUHjg0LCJT9ePeG+eH/HQS6A0oBFgABAJn+k/uT+hr/KQd7C2kGh/pi8Qfzm/5HCwAQVQrJ/lL0NfCZ9CoAgw08FN4NVvxA60HoO/dUDQUZCxG3/FHtsO5G/awKnQvQAc74yfnHAnkJGgZG+zTztvXlAFcL4wxoBbj7wPYp+Mr8CwHSA3YFbQWHAoz9C/o7+/H/GgM1Adr8gvwBA94Kmwra/tfvcesI+BENchlqElT9Huuz6YT4LQrvEBkKf/67+Hb7vQCcAWT9nfm4+2kD2gq8C1kE2Ph88CDxbPvGCSkTxhA1AwDzMutJ8dQArA5uEWsIc/sZ9FX2bv4rBfUFvAEU/fj7A/+aAykGegT7/qP4n/XT+HwB4woED4oKIv+28mns4PA8/08QixlmE6b/I+q54WvtIgbXGtkcAQu+8tDlnOwSABEQ8xC2BAn4KPbV/nwHPAbr+1TzafYRBKcQmBD8Al7ylOtg834DZhDsETUIZPon8WLx6/kkBagMpwx+BU378fP/89L7pQYeDVEK3/9n9fzypfpsBggNXAmX/lv1ovRQ/OUFOgoIB9r/S/p6+WT85//1AdkCswMyBGUCV/2i94L2F/0hCA4PygrS/IbvK+7++nsM5xSbDUz8Ge4m7WD5Vgm3EW0NwQCA9TLzlPnKAVIF3gNJAs8DbwVyAar3YvAN9VMFrhTDFFUDzu0n5gnz4AklGCYTUgBk76DssfcdBnoNJgudA278EfjU9mH5SQAMCXwNXwiN+5HwQvFR/lENXBHRBu/2Z+8L9iwEfg0fC4YAB/d39av7GwTDCN4GAQAC+TT3ufwHBoULVQc7+8TwE/J/AIYRQxZUCB/xoOOU7EQG/xt1GwYFn+vp43DyJglhFegPmgDC9Fzz9fn4AeQGpQeRBKL+q/g499f8NwaECzsHCvxC88X03v+lC3gO4AV8+KbwYvTQAIEMvA4yBsf52vLP9SX/QwcKCQwFh/8d/KT79vzJ/nUAuAFpAo4CKQLbAEr+TvtR+nL9tgOgCH8HDQCi9zb1YPujBcoLpgiL/n/1p/R+/LYGmgsHCDH/jfcC9v/6ywI2CNYHPAKj+wT5NPwjAj8FbgJd/Hj53/27BtwL0AaK+TbujO9H/+IShhrIDSD06OCH5DX+3RqYI6AQrfBl3evlDwLGGVwaQAY38SbtH/p5CL8J4v7O9ej52wcEEX4Kcvh/6j7t5/5qEfEWsgxN+3nu0+ym9ZIDvA/KE1YMIfy47E/p2fU6Cm8XehPJAU7wxeux9ZUENQ2KC9QDuPyM+d75T/wbAPQDPgVHAkj9hvvq/4sGVAeL/p3yu+8G/LkPRxrUEMv4L+TT4rv1Og9GHkwaBAct8HviteW/+PAQBR8gGQADXezf5LXvEgLcDcQNcQcBA+8BCv/G9gnuEO+q/qsURyDMFeT5wt/c2pXvaA/WI04f2AYI7Rjjl+wv/wYNjQ/kCe0CZv56+4X4mPau+OH/9ggTDicLLgHV9fjvf/Pi/qALqBFdDGP+6PDD7dD35AfJEQEO/v8d8wzxIvopBvMLdQjk/yT5WPin/P4BowSoA9UAoP4l/sD+Uv+c/zQAVwEpAmgB9v6G/ID8vv80BB8GGgOb/IP3lPgyABgJ1QsEBQv5gPFo9YsCYQ61Ds4CffSs7x34hgY4D9ELv/+V9Fzy/floBWYMYApYARz4E/WS+WwB9QZ9B1kELgBc/GT5x/iH/AQEZArsCdYBJ/ia9Hj5wQGDBn0FPQITAekBxABu+5H1F/ay/4AMDhKXCs36W+5M7uj5Ggg7DxcM5AKo+rT3jvnw/Fr/4wAEA+MFMgckBNn8vPW79Av8KQd+DU8JYP2S87P0SAA1DFsN1QEv803uI/hnCaoUJhE2AQvwV+lh8ZQCqhFCFdkLQPx+8AbvBPcVAogJvAp9B/QCtP6i+in3evbJ+jYDHAsoDagH7P2w9UXzZvd9/0UH2QqoCHUCNvxL+Sb6lvxl/o7/sQFiBW8IaAcwAdj4lvO79H77UQSdC9wOMAzaAlr1iepm6sH3OgxCG6YaEgp08zLkveQi9IAJRRkLG+cNP/kN6c3mRPMFBlYT9xMzCeb6wPEQ8g/6AQQkCroJ1QMn/Pv2TfdU/fYF1wtMCgMBV/Vd7wv0GgFwDtwTTg68AKrxPegk6vz4VQ+yIOsfpwkr6tLWJN5/+xsahCUfGVIB6O7K6aLumPbW/j8I6xFnFtQPqv6867fijek0/AEQGxuhGY8N0vuG6srgB+VV+KISJSWVI34Nqe/G283cgPASChcbKhwSEPf/M/SB78/v3fIv+SYEmxFuGswWHgV27aDdHuCU9IsPxyHLIfMQRvmt5sXgjuiq+fsMBBvwHaUTZv/S6crdrOIe96QQUCEwIMIOivf65vDjBu3G+wMKWRTBGK0UeAZ58bPfJd227kQMQCRqJ/MTyfbu4cnfZu13/2AMJBLTE7gSaQuE+nHkCteD4KYBIygEOWclW/iD0AjJquTdDFYlQSIJDrr7C/VX9dLz9+8d8kAAIBSNHnAVSP4M6kPm3vFXAO4GOAa2Bg4N7RLSDG733d4q1xzrrhCULnYv1xIE7VPW89jY7C0DuhObHm4jhxvWAOjaTMGty2b7gjTVT+E4Tv7rxvG0Kc9qADEq+TjlK60OTO9W2LjQINy7+GgcJzYMNhsY/ulcxYvAnN/JEHk3Lz4uI9r3r9SuymDb2PqVGJEoIicZFyz+wuPP0TTTAO25Fjw6lD9oHlbnrLu+t03foRodRq1I+yHj6Fu9BLc12YYRGUGvTBksefAWvNquW9KHErlITVPrKrXns7KirM/ZQB+4UudTYCBf1u2j76pV6pc7AGkJUeT/GauIjjTB1iEdbKZpHRuOuc6MWrUuE1JezF4QGNnEs6Yn0REcxEc6M9X1z8e8zzwCRC/nLjYEqNeq0Nryth0iLP8UCvCW3dXpQgUjFlYQqv2c8WT2IgVPDsMIa/kX7jnxOQHmERAWwQmN9XPofeyi/uIQhBU8CoD54fBT9QYANQa8AyP+nv3EA4gJrQYP+zbw8fCz/gQPNRSTCeD3s+228lQBUgzlCjAAdPcD+ZYCAgpCBx78e/Jx803/Mw01EtkJrvlU7f7tivtgDGwUAg79/ebvZO2N99wGDRH6D9QElfa77e7v2fxlDcIWJhGI/ibreuW+8twJ+RmNFxwFjPAN6APwLwE5D5oRnwjn+1T0Afb9/SEF7QXlAOr7qPz6ApYI0gZi/XDzxfEb+1kJJhLiDqgBkfPK7SHz2/5WCd4NhAxVB03/JvW37AntefrLD7geIho5AtHmB9wW6l4GFBzsHF8LhfaX7JfwA/vJAhUFSAX0BukIbAYl/Yjx1exl9bEHERf3FsQFkO9S5RzvBAWYFW4UKQQz87buDvhpBa4LqAfs/kD54/lw/rMCdgTfA7IBcv4e+8H5P/w/AlcI0wlnBM/6qPOb9JH9TAgzDUEJDQBY+Iz2CPoG/30CIwQbBYkF8QMn/7n4//T39z0B+grCDdQGJfvC8x/2Sv/HBpQGjQAE/PX95AOaBuIBUPkJ9cz5IQR3C+0JVQEV+VL3Cvz3Ad0DIgHR/WX+SQP6B60Gy/278u3uQPiGCpIY7hURAr/qzOFm7uYGAxneGGsJqve07kzwSff+/rAGSw7pEZELwfo36VXlMPW4DiweqhYC/mfoIee5+fYOqxStB531cO/P+Z8JWg/lBeb28fBf+YUHkg0ZBhb5wvOA+5oI0Q04BRn2XO6u9WwGvhK5EHECRfPo7Yv0BQEHC9MNhAkUAWv4gfNA9XH9lwcCDZMJk/+l9sf1Hv2LBTQHIAE1+jH6owESCWkIOf9u9drz/vvzBggMOgjQ/5H53/gM/Gr/EwHMAeMCJAT5A1MBC/2F+Qz5SfzHAcUGqwhaBrcAXfp29iz3Vvx0AxMJhQr8Btz/UPgi9Nb1//wTBjwMEgyVBSf8pfTx8gr4ggFwCskNUQlc/9T1o/K394wBjwmvCu0EFP3R+Fr6Jv+fAlYC6f/q/tcAYgPzAt/+m/pv+gT/dQQMBsECDf4//Dj+4wDZAEn+3PyP/9IEbgesA6P78fXI9wAAFQj5CQwF0f1Y+Vz5V/whAIADjQUNBZIB+/yQ+v37af93ASsB6QD2ApcFIQTA/GL0aPNO/dILShOpDPz7V+1O6zL3xQiEFEATMAat9dnrcu5n+1kKMRLiDogDlfes8QL0KvxFBZ0KsAmCA1v8EPk0+57/agEs/8T8Pf9oBnkLMgdB+rnu2O/z/ocQdRWzCMD04uqZ85kGQxIMDHf63u659G4GrhI1Daz6JOzm7kgA1hDhEksGDvc68bb29f8mBVMFiQT0BOIDOv5m9qjzlvr6BqAO1woL/3L1b/VP/RYFhAYHAun86fuP/2sECgZKAlb7mPaq+OoAHwmKCiAEp/st+E77NABZAbT+iP3qAQoJ8wq+Avj0Hu1486AERhNpExEFVfRq7ib2pgLYCOwFVQBX/98CbARf/yj3R/RL+2EHaQ54Ckb/NfaM9aP7BwI7BPsCwQFMAh8DwgG5/Tn5jPfD+iYCEwqHDRkJ8P0y8r7to/SBAxIRRhS+CqH6WO5e7XT3gwX/DkoPfgeL/BH0J/Lz98gCggx1Dj8G1/gT8FPz5QB+Dh8RIgav9YLs+/FTAnARDRQ7CLr2JeyF74r92gstEYMLHACG9mnz6/Yz/q4FQgrECfMDg/uB9Sz2O/16BekI4gUlAK785fxK/kz+fv1w/gECxwVNBnsCiPwg+Pr3mfwMBFAKzwqeA1f4EvF39FgBQw7AEE4G3PY+7qryaQCWDZMROgo0/OnvGO169iYHaRSJFHQGpvN36cru3f6+DQcSKwvM/0j34vSg9+78iQLABjIIOgaPATD8cvgA+Dn7/gDTBpoJRweJAAn5YvUW+KL/SQcxCqwGU/8a+dL3oPtbAS8FQQV+Akb/bf1E/RD+F/8cADIBRQLgAkUC9P+E/AP69vonAAcHiAq0BoX8lvIi8WT7bgsLFQYP+PsJ6izoGPn6D7UaAhEy+5rq+Oq6+QYKbRA/CzsB9PkW+Mz5uvwpANoDLQYQBb8AmPwF/L/+4ABt/zX8WPxJAssJ9AorAhr13e4L9toFfhFDD0ABd/MG8ab61QYLC/gErvtK+Gb9KgVrB60Bb/m09nD81AXMCgwHlv0B9kX2/P3XBtIJ+gTv/KT4J/sgAXMEQQKW/Rr8FgDCBbsGnQAi+Dz1fPsqBjkMgAhv/q72KPcR/mcE/AQDAQX+k/96A1kEvP8o+d72x/uvBB0LcwoHA2D5OfNy9OX8+gfLDm0M2wEA9u3wwPVZAAYJzwqvBikBdv1P+zb5yvcD+qEBrAsiESsMlf2/7Zjn4/BQBVIYBx0bD4f2++Km4Qz0cA5bH30bsgUl7Xbi5etnAYMT7Ra3C0v7Y/AZ8G/4iAOnC1MN6gfV/T/0JfGI91sESw8kEE4FIPYD7nXzNgJbDkcOAQMM96L0f/zyBdcHSwG8+e/4gf/4Bn0IBwOF+8f3qfmp/jUDqwU+BgkFUgEn+0L1bfSr+0wICRKUEMMCEfE+6Krv8AKEFLIXcgr69pvrkO/d/VoKQwzzBDf9PPz3ABkEOgD89+7zMfrJByQS3Q8iAVXwIeqK890FuBMJE4cEQfNs7FP1ywZWEtUNjvxG7fLtL//XEtgXDgkT8oHlTO3NAgcV/BZYCeH3mO4a8a/6cgRjCp4LNQivAK73VfIj9W//gQpYDkcISv2e9eP1GPypAsYFjgX3A7ABB/6H+YX3gfuJBBIM8wp3AFz0xvBM+WYH1g8lDLD/OPS+8dn4kwO+CuMKZAUn/pL4WvYN+Jn9jgUrDIgMigQ++EHwAvOz/j8KKg3QBiD+S/ow/OD+KP6F+xz8OgLCCZQLkQQg+dTxXPTN/kAJPAylBi3+0PmH+yb/l//T/Av8VAG4CaQMgQTi9RHtG/NwBPcSVxI+A7DyGO6j95MFUgySCFAASfuj+9/9hf5E/g8AKASwBtUDzfyT9yH5QgCoBiAHUQI9/cT7ZP0g/4H/5P/uAaoE2QSPADD6IPfd+iADTglSCEABRvrP+NH8hAGTAj0Ajf6eAAoF5gaEAof5lvJx9Pb/CA77E90LJPpQ663qRPmZDIUWDxCo/qrv5u2G+YcIJw8tCan8O/Q29gkASwniCjUErPoJ9cP2XP7kBh0Ligj0AEf5JfbB+H3+mQMrBpMGiAWWAhP9ifZp8/z3vAOoD3oSVwhB93Hr1O2n/M0M3BLnC7j+LfVk9Ev6PAEBBdoEcwIeAIz/ygDQAfX/F/s+96z5HQMtDdcO6gQn9jTufvNxAaIM9gwwBDb7Ovmq/QkCNAF4/Mv5dv2IBV0LbQkeALD1kvHp9joC6AufDcAGcvyQ9dr1/vthA4UHdwZwAQj8Tfrr/QwEtwYSAin5fPQ0+jQHmxBFDYb+pu+C7K33mgjSEqwPrgLE9SXx3vXO/vIFtAjfB+UEOABs+ur1QPbZ/IYG6QwvCygC8/dc8/P2n/9sB9IJPwa9/3/6OfnW+yAAlQPOBKEDkQDB/ED6XfuBAJwGpAjaA/36zPSh9rv/lgn6DHcHAv3J9Bf09fp9BFoKAQkYAin7QPnN/GoBLgKl/pX7Nf4XBhcMegg0+w/uO+0N/GIQ6hnID874q+a55yb7lxGtGfsN3vhQ697up/7bDPsOuQVs+tL1Yvk0ANgEjAWpA60AFf3T+WL54f3RBZ4LmAlx/8Tzju/79qAFcREEEpYGgPY77HDuqPthC7sT3Q/UAgf1d+4R8uD8mAghD1INVwRD+W7yoPOP+/UEjApZCssFZ/8k+eX0NvXj+wYHMBAREKgEZPR46qTu7P6KEH0X9A6a/Knsqelq9c0HPRRVEuIDxvPn7f31qwTGDZoKK//r9Uj20/6rB+EJpwST/BX35PaQ++ACwgmMDEgIbf2j8WLtlvVgBn0UZBW4B8P0een57AL8RAz1E68PPQMy9lzvn/Ej+74Gmg7kDmMHjvtR8b7unPZ1BRMSExODBtf0N+sN8bABGxCJEeAF/PYz8KX1FwLsC3sMOwST+eXznvZe/wsIHgsqB1H/n/io9r35l/8zBToIXgeYAsj7wPZX9xD+gAYPCoQFiPwU92X6jgOGCY4FZvqz8iz3kAV2ESQP2/7J7QHr8vmTDmkXvQyS98/pwu63AZ4S6BNSBRXzVutC8ycEjBGEEjAHhvds7cXunvojCjwUXRKyBAzz0Oho7Vf+QhAcFw4Pu/488bzt3POB/oYIrQ7YDuoHpPvj7zrsgvTSBBETqRWLCuX4Nexz7Oj48gj4EZEOHwIf9tPyHvmMAnoHcgUwAA/95/1TAC0B+v/f/pb/NwFUASv/D/0C/u4BBwWXA1X+I/ol+1sAsQRGBFAAWv0m/twAhwHr/kf8w/1AA2wH1gQ2/An16fa+AcIMBQ6OA3b1Ce9W9U4DaQ4qD08G2frN87Lz7vjXAC8J9A7YDVcDXvN36L3sRABkFhMeyw/69JzhlOSj+ycVEx6WEPL3DufZ6dP8sBB2FpsKDvcs6xPw0AF0ErwUdwaP8qLomfA2BC4UoBRoBoH1X+4d9Lb/pwcWCDgEVAE6AWcBv/6K+e31YvhFAYALzg9eChj+mvLP7on0MACQCwURsw3SAtr1W+5r8Xz9lQrhD1cK9P6I9q32rf2CBBgFff+3+VD6JgL/CmcMPgNk9a7t/PINAtAPZBLVCA77qfJ98y767wD+BFcH+AjzB5kBaPdN8DLzmf+ADO4PIAgA/e73ifo7/vb8Cvm0+q8FhhIhFO0EQe7K4Xvq0gJRGYQePhBi+X3oKOa78QEEtRP1GD4QJ/2K6h7lHPJRCaIZZBaKAqzumuqr95kIvg5PByT8ivge/ocEZwOs+5j2l/uHBwAPkgm6+jDvF/Gn/kcMdw+MB5r82Pbx9+37G/+XAQwFdAjQB8oA7fYA8iz3dwN/DVoNggM++Dj0PvmXAQkGYAR4AFb/lgEAA57/GvlF9kj8CQhgD0gKjfuD7/7w3f7ZDAgPzwSf+Dj1p/unAy4FfQCu/Or+ZgS6Baz/qfeR9in/Rwo7DU0EzPZ28MD2PQQEDicNkAPl+Mnz2/Wd/IQEkwoZDCoHzPxv8oPvtve0BicSVBFKBEr0wuyw8kYBDg6cEPkHn/q+8Sjza/3NCOMMCged/Gb27vigAKIFuQM9/h/8NADmBfIFdv7e9S/15v53C3wPQwbh9o3u9PTzBKcQpA2S/iDxo/GD/5MNeA53ATvzifHb/fQL+Q0lAo70BPMY/00Mqgwd/xvxafEVAbwRFBOUAjvu6+eO9SgMmxmiE2T/Ouxl5+zy6wUwFAUWTAsg+rTrjujj8/0H7xcCGG0HTvJn6BPwRwGHDeoM2QPA/A393ADfAGr7nPaH+eQDXA05DcsCQvZw8XP3oQL+CdUI3gHG+/b6ZP62Ad4Bff9o/bP9SACJA1MF1QO0/nD4AfZE+1QG+g6fDMz+se+Y7Mn5Rg2TFk4NHPkU65Huhv/7DuQQ9AUb+V70sPis/4UD+wPyAz4EfwI6/ZP3Qfc9/ncHAQvXBfb8Q/iq+tP/pgFF/7P9dAFJCG0KwAJo9YPtWPMmBHkTJRVhB2z0Yuor8GUAOQ7TD+8FSPqE9tH71ALPA4/+FPqG/EEEgwmsBh3+hPcP+Oz9QgN2BMcCXAExAZwAV/7E+6T7xf7FAm4E9QJ0AEH/ZP8S/1T9rvvG/HYBMgdvCR8FwPtZ87ry9/uPCYcRAw2H/tnwn+5y+W0Iow8JClX9qvT99lABnAnXB2b9G/Rw9YIBUg4/EIsEPvSc7MjzpQN6D/kOmwT6+XX2mfna/Yv/JgD0ApQHOQm7Ayf5aPGm82L/MAyEEGwJbPyK8qjxevniBEQNqQ1KBcT4UPCV8gX/8AyDEYkIoPhp7kzyQAEMD1UQJwTA9OHuIvdqBjwQDA3h/zrzd/AE+Q0GOw5sDKECwPen8hj2jv8FCZgMBghN/vD1pfQr+44E1gmLB3AA1Pqt+iz+VgAe/+79SAEKCLIKCAN+9IjrtvJdB6QZRhlOBDLqxt/u7dAJjR0/GuoDPu1b5y/0vwbVD8cKdf8i+d/7IAK9A4v+Uvi1+EABOwtjDXkE3PaJ7770bAKeDdsNMgSG+Qz2TPonABsCpABgALUDWge0BWb9GPQt8gz7Fwl7ERUN8P4t8qbwbPo5BmwKtQX0/gn92f+6Afr+Zfr5+b//Bwf4CIQDhPv392z79gFTBdMCiP0Z+3r+AQVhCCgEZPru8jD1JgEzDpcRlwck96HsBfCy/sUNphK5CpP8XPJF8rX6iwQVCeQG0gGn/qD+Gf9l/Yf6f/qu/z0H0wp+BhX9Hvbu9r396wPnBEkC3ABnAokDOQCQ+d/1TfqfBDYM/wmk/2f2Zfa7/p0GZgY0/1L5PPvnAlUIJAa1/uH40/jz/CcBhgPnBNQFsgTW/8z4bPT09vL/CQrTDk0LXgEq9kbvmPCq+mMJsRSrFJkH0fRs6HTq3PjLCawTSxNCC33/8/Jr6enoEfZtDWYhMyIzC7rpR9W83ez9rB6uKHgWmvcG4//knPeHCkoRfgukAdP7hPv1/Pb8avxK/hMDIQccBtT/M/kB+If9XwU4Cc0FI/0i9RP0g/xMCooTBw/F/OTo6+PW9BQRFiOCG6r+BeI+2/Humg2fIOUbmwU07xHnG++B/rIKvw7ZC0gFY/0U9mvyrPXH/1YLXBB6Cjj9/fHf8E365waYDXEK0QDU9+r06PjAAP4H3AqGBwn/pvV/8eb2KATHEJkSOAaX8x7p/u+IAyoUbhS4BNfyle3D964G8QzLBkj8F/j3/BoEPgV6/8f5OvsVAxUJ6wVq+6zzXfduBBcPsAxK/lTwZ++j/KYM8xHQCMX5KPFc9Kb+SgeOCcgGUQKN/a/43vXu+J4CAA3YDocETvU37hb2UAZXED8LSfzf8cj15gNeDs8KDvyG7wjxMQCWEDcUZwcp9BbqZfHfAygS4xBgAg/0IPKp/EoIjwkSAI/2vvclAzEN1QoS/Y3wavFk//UNPxDYBHL2aPHL+MUEvArSBjn+RfmU+3ABSgR3Aa/83/unACgG5AXl/nv3Wfe3/3kJhQtJA3X3P/J2+EAFPg4qDKYAm/T48BL4cgRnDTkNmwSQ+R3z3/Qi/WwGMwsiCSECtvoS9734HP7cA+4G1AU6AfD7svmb/MsC6wZqBFD8svXu9yQDew4lD3kCkPFO6qHzPgdcFlkVwgTK8PbnXvBvAx0TYBQzBx/22e2P83EBGwz3C9sCb/lA97n85QNxBusC+/yO+SL7tQDOBjQJMwUQ/Jvz4PJH/DUKQxJnDTz+nu9o7AD3ogd1EkUQVAMQ9SLv+fTTAVAMFQ0wBCX58PR5+v8DZgjTA3L7Qvjx/eQGsAmcAsH3YfMS+jwGaA3iCWj/wfZ/9Ub6UgDYBOgHEgnLBe78/vJe8HH5wQh8ErgOkAAy8wvwnPfHAtsJEgp0BWD/LPp59+74Dv8XB1ULSweg/F/z0vO+/pYLUQ9ABsP3FPCX9VQDiQ38C+gAefaA9c392gYICKEAdPgz+N8AZgoiCysBkvRS8Jr4KQe5EDgO9QED9fXvHfUbANcJOQ15CXYBc/n/9NH1dPthA8wJTQvqBvX+0fc69R34cv7YBIYIVwjMBIX/kfrY92n4DvxfAW4GZwngCCkEN/xi9H7xu/aHAmgOqhKlC9f8We827PT1DQYgEXcPSgPz9hH0Y/upBMUGUQC5+L34qwGtC/4MKQOr9WbvI/XRAbcL6QwWB+b/Cftb+O/2C/jb/WkHJg+hDmkESPZy7cXvn/tcCeoQ6A7SBTr7+/NJ8gn2wv3kBtkN/w7CCEj9GPJa7Tfyv/6tDJsU4hFQBS71S+ok69X3dAnGFWIVmgiJ97zs/O3F+CEFRQytDMcI3QKS+zP0zfDN9bgCCRDzE5AK6/mu7Rbu2PnPB48OTgvAAuH72vm3+lD7sPux/k4FYguPCi8Bu/XL8dv4TATFCaAFYv4R/cICJAccAvv1qu7g9UsIHRcKFYkCy+2l5pPxEQWREjASNgcI+8/0b/W5+d3+GwTKCGoKHwaw/A70UfP0+2cHZAxeB639LfjE+jgBLQThAMP7b/tcAeMH0AcBADT3vvVJ/eoGxAmkA/v6P/iV/RQFDwewAVj68vdw/KMDxQdnBm8BavzB+S36Uf3hAXcFtwWKAsv+nv3T/vn+/vse+UL8WgakD8gNAP9A7mLq8ffeC0MVBA0B/OPxA/ZsAVUHnAJU+kT55gGdC6YLUAAJ847vLPkRCGsQNwx1/zb0n/IU+3EGvwsDB2j8F/XY9+ACggw6C8n+k/Hb71L89wyuE6UKOPlm7SrwpP4XDYYQEAcB+fXxbfcjBHcMlgjQ+wHy7/TxAvQPMBDYAsby0OwA9TQEGg8rD0EGYfv69Ez1gPoSASoGYQhLBxUD6Px29zL25/pyA0sKRArzApf5RPU4+SQC0Qj7B6EAGfmy92L9FAU8CIgEkf1A+Yv6b/+GAyIEBAK///3+U/9Q/1z+jP2R/rgB6AQFBe8AQ/uV+Gv7ywHjBggHYwJg/Pv4UPpy/+kEywaIA479xPmK+3QBEwagBMf92Pd2+c0CCAyaC53/OfGg7eb5HA0bF6MO8/m56dvq5/sPDwMW8gwW/PPvwO93+UEFBwyBC7YFG/6Z95X0Aff0/uoIjA74CoL/+PP98Lr4wgSOC8AIdgCz+p37TgDBAkMA0vuP+nn+pgQoCGAGyQAr+2/4Gvkh/IcAlgXOCXQKOQXz+s7w++2T9jkHtxVgF2UJL/Qj5h7p3/rEDpMXAhGWASv0v+839BH9nAXECrMKIwXI/Pf27vd4/jwEvANP/kb7EwBYCeMM3QNL817p6/BhBkAZrRlQBh3uGuSW71YGoRUjEusA7/Gf8Yz+xgv2DAMBhfJ67nH5pgveFooRnf6+687mJPNTByYVehQPCHr5NfGy8RL4/v+nBvwKEQxpCH3/OPQz7cjwU/+5ENIYZRDh+3Ppwuby9XQLJxdWEVcAKvJ78M75swTTCDYFPv+f/Hn+eQEJAs//Z/01/Q//BQHPAdcBAwIRArcAgP05+vr5Uv4uBbwJ/wdaANr3m/QQ+QcCHAmvCScEB/35+JL5M/1VAVkEeAULBOz/2fp4+Kr7IgMxCSMI4P//9lb1nPx9Bn8K7gXe/WP5svpF/jMAqgBVAl8FCwYsASr58vRK+XcDSwuRCmsCnfku9gn57P40BA8H5gaKA8f9U/ja9jf7RAOmCYsJtgI++qr2bPqiAbwFrgO0/rr8CADDBOgE6/709yr3Xv6gB5IKhQRO+6D3dvwXBPQFjv+B9033hAEhDg0RZgXc8uDnwe0jAdsUxRtdEcX7kOfz4CfthQYJHqAjiRF18p/bl90U92QV9SLxFxX/WeuR6Cb0igJCCh0KwAYPBMkBtv3k9/jzN/ZL/8MKlBGqDmYC+PJ/6RXtvv1hEtYcnBPW+ubjLOFq9rYTaCEHFMn2TOJF5y8A+hbtGGcGz/AV6qj1nAe+EGMLR/7r9M/1dv7vBqsIEAM0+473C/vtAvwIRgj2ADv4hPTX+K0CjQs1DcEFcfmC8NjxkP3gC0ISjQuJ/H3wI/Cr+gsHTAzVCBkCzv1m/KD6nPea9zz/JAwNFHMNKPpd6FLnYPnVEDgb9RBS+8DrCO11+8sJWw0SBqD8k/kI/toDVgSk/lD47fcB/4kIEA2PCHT95PL97173TAVWEQMTqAen9XTp4uyh/sERTBfPCtP2H+wC8+QDhQ5hCab6BvIw+egJmBMpCyn2geaw6tQA5RemHVYNRvME4zvoAv5DE3oYkwuI+Jjux/MNAdUJdwdh/sD4QvzRBCwJUgR7+tr0vPikAtgJiwjZACD6uPlc/m4CNAJK/xj+gwDIA7IDkf9A+xr7K/8nAy4DGwBo/rgASASUA+f8n/Xu9WQAsg3XESgH8PRQ6vvw1AP8EgQSAgPr8ybxtPrrBd4IRgO8/Lv7jf+/AvwBPP9i/i4AiwHJ/1v8nPvY/zkGBQnfBAL8pvRL9Nn7DQcFDzcO9wO09XvsZe8N/pIP4hc+EM38iupz5gT0KQpfGewWuQTh7/fmk+/DAqASexQ3CKv32+4e88P/iArrC28EH/sp93H6LwEIBisGYAJH/YP5Hvkf/UYETgrzCagBkPaE8Wv3DAQpDZ8LwwGy+HX37PwoAjwCDv8+/gUCOwYQBS/+7fe6+OT/DAYaBf3+hvuC/8AGBggr/9ryY+/Q+rsNdhiXEMf6mOcJ5kn3Kw4EGmoTxQAg8CvsO/W/AuUK2wl1A5X+t/46AboAQ/tG9f31KgACDqYUCA2z+jbq0+fN9XMKixflFLQF8fTJ7F7wr/u+B5cORA2TBEP5SfKv9ED/VAocDewENfjU8en3+AUTEPIMWP4I8Ozt9/maCvcSUQ34/v/yMfHc+PsCuwhRCJYE7gAt/l37wPjR+K39uAWlC34KHQLe98ryTfaz/1gIwgp/Bsj/bvv3+kX8z/zf/Db/NAVyC0gLRwG28mTrrPNPBwQXGxU1Aqntc+he9vIKuRR2DLz6hu/q86gCuQ1HC0r+QfNr9HEABQyfDBoCQPY+86P6FgUYClEH7wAv/Kz64/rD+1/+tQOOCdwKNARH+GHvVPGF/lgOExXvDCv7n+wY7On5hwutE6IMnvyw8DHyJv/5C10NHAJf9N3wf/uAC9QSdwqv+M3rMu78/RcPKRW2DJH8vO+X7SP2kgOGDqARSwtC/gvxjetr8s4CqxL1Fu8Lx/jE6m/revlGCnoSNA5sAqr3nPOn9pv9hQRUCIAHsQLg/Mj5NPtm/40CRwLh/9/+EAEmBNUDlf4g+Kz2K/3TB2UOiQqH/XLw2u0l+bwKLRX4D+r+Mu927Hr3hgaFDvgL3AMO/eD5Wvhj95n5ygEiDbsSAAtg+AboC+jR+jUTOh6rEjz5m+U95gT5OQ5/FrIO+f+u9Qz0qPcA/F4ALwYKDM8MqAS99qnsMO9E/s4PzhaBDWT6qOtI7FX7vgw3E9EKavtF8Qjzqf2cCNwMxQhU/731e/E99goDqBC2FHYJcPS65BPouv76GEAitxGn8pbc4OCh/KkaKCSLEj70neBf5b38qBO9GSUNuvkG7lvwJPyvBwUMiggzAZz6ovcm+Wr+BAUyCacHWgCw9xj0J/kFBMoMcQzFAvP25PEQ9+0BMgqpCpYEUf1P+Xj5NPzU/2EDxAVpBa8BdPxi+fj6IADrBMIFOAIp/XX6Rfx0AQwG4AUdAPH42/b1/BcHdAxZBxX74PEC9E8A6gyLD/UFpve27xv0JgG6DH0OLwbv+q30KfZ0/AEDOgd3CD4GVwDh+Lf0+PdhARcKMAsLBOb6AvdP+qYAfwTaA+QA0v7A/o//5f/L/ycAEAE3AXD/u/wq/N7/6wXYCE0ECPrq8ezznwA+D+8Trwk19w7q+euE+9ANCRcxEvUCJ/Km6K/rufq5DiIc9xiNBLzqfN2555ADTR0XItEOdPLY4XDniPyUEL4W9A2z/hTzoPDo9lcB7gkMDNsG+f0197T2HvwkA8gGCQVGABX9F/5dAToCaP5X+WH55AB8Ci4NDwXE9/bv+fNpAJQL4A1NB9f9rfcS94b6Xv+ZAxMGIAarA5f/ofub+Xb60P1AAu0FHwfqBPf/oPrQ9xT5pv0+A7EHjwmwB0MBg/dd79zvbPxtD4IbLxXI/RvlQt7e75ENSiG7HG4EUes245PvswSYEloRSwU/+Uj1pvmQABEEogJe/zf+DwBQAjcCCQB3/gz/GwAI/0L8zPvIAK8IHQyIBbf3F+2Q74n/PBJmGYUOhfj95nvmH/fkDBMZ1hToBHH0iOxT7yn5mwRgDcgQXg1jAwL2fuvC6rT2cgpUGvQa+wl/8dTh0OWP+p8RwxutE48Axe9H6+LzFwIZDHUMHgXk/KT5/vv//4gBEQBR/s7+NQELA4cCaQDg/u7+Tv85/iH8G/y0ABQI6AuhBrX5fe437439iQ/rFigNhflS6z/trPxuDFEQHQeh+ij2PvwEBXYGqP7o9X/22gEyDnMPJgN78xXuYPeeBnIOSwnD/UL3xvrpAkMGPAF0+bT3zv50CEULDAQh+XP0JPqbBOAJBQXl+sD1j/vUB+MOZQjh9xXrhO7JAWMWCBtnCpDwqOGB6d0B1hdmG68LEfYs6g3uzPupCMYNMAvFBNX99feq9Ez29v2iCHMPZgz7/2jyIO5R94YHAhL8DW/+P/Ca7z/9bg37Ec4Gj/UT7WD0BQU+EcAPoAJy9G7vUPZnA0MNPQ3gA1/4QPPt9ycCuQk+CRUCbfrD9/n6yAAlBQUGzgMOAF78F/pe+rb9KwMDCOcIMgS++330qvMN+/sG3A/qDm0DaPRo7MfxKwGND74SbQl5+6DyzfIE+WwAugZuC58MAweW+iruBOyj+I0MoxiaEpT+Zew56or4UAoaEWsJVPy39Y358wF0Bv4DM/59+jf7Ff9+A1gGHQYWAp37ifYK9/D9HAcwDGYJbwAX9zTzJPetAEwK8A1wCFX8lPHJ8Bj8uQveEmcKU/je63zw8wJvE2QTvgLo78Hq1fZLCUMTRA76/8TzUvEr+A4CjggeCYAFNQFM/hr8H/k79pj33ABcD5YYQxH2+CzfzNkq8kQZyjD7IwP74NXO0XvwXxeCJ8QXOPo76VbvbADvCEMCzffW+BsHTRSsEMD7Vua049j3QBMBIGYUr/qd56bovPnqCnAP1geY/k/86//pAdH9aveE9kn+YwnFDvMJvv5S9T/zDfhx/4wF1QghCUYGXwAI+cXzVfTL+74GrQ5BDmcFovkY8qfy5PkfA+YJ+gskCV4C0fkW80ryU/lgBW4PpxCDB3z5fO/I79T58gb9DqENtARX+ov0lvWR+6IChweXCJoF0f8i+hH4JfsJAQsFTASAAA7+UP8kAncC+/7Y+oL6A//BBN8GyAN5/nn7k/yS//cAz/9w/qL/JAOSBbkDHv7o+GX4P/35A9QHcAZGASX8QfoN/FT/ZQGIAWYBqgJMBAYDW/3J9tj1q/2PCbwP0wla+5/vUvAN/ZYLnBANCez7p/N19Rz+AAbAB6oDNv7W+8D9iQFtA1kBzfz5+VP8GwMJCVgIQwDC9gD0C/tvBoUM8we+/O/0kvcXAn8KhQiV/enzSPWPAR8OHQ+HApby9+zI9ikIIxNkD4UAN/KR7vj2bASYDTgNxgSL+g315vad/RIEigYCBR4CIgAT/5X9PvvU+Qf8gwL5CXIMCwZs+WvvnfCc/UENiROGC4f7qu8A8Or60AdlDrwLcQLy9/nxf/Qs/9wLSRH9CSn60u1G79r94Q2FEsQIkPlK8Qz1if99BzQI8QOD/zD9UfxA/NP9cwH8BAsF0gC2+0f6uP21AtcEzQIa/w79p/1j/48AAwFxAbsB1wB//mf8Bv3PAPgEgAUCAZj6sveF+9YDRQoyCYgAYfa28if5iwV9DosMrAAd9P7wsfm3BlMN5wiG/nr3lfii/vECewIjAGEAmwNmBXQBAvkb88X23ANXEZUTZAYg8kLmAO09AjwWExqACxr2dOkY7R78uwrlD9oKaQEY+rD3J/lt/HEApwR1B3AG4ADY+bT2ofoeA2wJDwi2//n2OvWY/OYHOA6pCWv8APCC7pb6aAzBFuAQzP366q7m2PRxC7UZHBWcAWXukOkc9UcGeg+SC8oAkPm++k0AqwLa/mb5hPlOAeQKYA0gBbD3hO9g854ALg2LD0AGBvl68oD3MQMCC+oH0PxA9Pj2ggPGDrQNrf8N8MLsxPnJDLcVqQww+eDr3+89AbQQIBG5Al/yLe6B+YkK2RJ8C4P6vu1e7+j90A36EggKUPqX7yfx7PzECY8OuAiK/bb1hvYc/ocF3gYPAnL8jPvv/9IE4QSF/4v5l/jO/ewEVQjqBTYAdvvo+fL6LP1MAJAEiwi9CI4CPvgJ8eXzmAA9Ds0R1Acr+HjvFPTNAGcKDQqFAub7NfuY/uYA1f/v/d/+tQJ9BXgDdv2c+K/5VwAVBxQIhQJg+7n4FvxmAZMD3AEMAFABwwNdAqr7XfV69zADZQ8MECQCSfAu6lv2YAuRF3gQHPyR6xHs+/tDDUwSEwk6+yb0Pvff/owDPAOVATkCFQQCA2n9Sffn9k3+VwiuDC4H8Pvo81L1rP5kCEELxQWR/Gr2afd8/mcGgAmoBdD91PcW+B/+BgVwB/YDJP4g+/P83ABvAkAAUv2z/eAB1AXkBLH+H/hF99b9KweyCyYHcPzQ8230Q/6vCYUNswb2+uvz2fZrACwILgjYAbH75Prc/rYCmAJI/8f82v1LAZEDmwK+/+L9Y/7Y/wMAqP7//RgA5gOdBaUCxvze+Db6ev9eBMwF+gP9AFD+Rfw++zz8rP8KBHUGAQV5AML7h/mn+lD+BAP0Bu0HKwRu/CP1QfQ2/HMIxA+wC4v+O/I18KH5qAZ1DT4KVAEe+nX4xvqn/fX/4AJ/BtwHrwML+zz0wvXD/8MKpQ22BVb5nPLH9vUBxgpeCtMBqfgw9rL7BwRhCM8FCf+G+RX5lP3IA7IHrQa+ABT56/Rk+LgCMw0xD0IFefUW7MfxWQMKE7UTjARr8qLsTffbB0AP9Qd3+kH0qPpTBjoLogQ/+Qz0lvk1BF0KyQdjAPD6TPpS/DT+BAA8A84GsAZ5AMj3bvTu+s8Gmg1+CHr7UvK99dECWQ0xCyj+jvKZ85UAdw04DhsCH/SM8Or5ggf+DUsJx/4q9/b2LPzHAYgEjQRuA8EBFv/R+y/6UPxrAaYFegVIARb9cfzq/vQALwAw/n7++QEnBb8D3f3J+Pj5JQH1B8MHOgAQ+Oj2Ev4TB7AJuAP0+l73fPt+Aq0FJwP9/gb+aADlAVT/DPvK+gAB5QgyCogBIPVD8AP5jgkXFJgOLPxD6/PpLvq9D9AZUxBm+sjotujO+bsO3RcnDyD8Z+1q7er6wAroELkJHfxU86v16f/RCDIJiQH8+P/2Sf2hBigLcAYp+7fxafKj/mYOPBUQDBn4Iug+6bn79xHsGuEP/Pl06jbse/uACkcOOQdc/k/7wf0GAJX+vfsz/BcBVwbvBigCS/xP+ir9PAE0Anv/zPxE/scDcQjjBob+4vSv8a/4NQYhETIRVQUf9bfrse8h/vEMkRKRDFUAEvbh8m32BP0kA1oHYgmmCDcEjvzN9KnxN/YrAccMABIMDVUAWvPS7W/yef1BCBEO/g0bCXAAs/U57SvtsfhLC8MZfBnPCGjxMuI95c74iBCVHUYYyAT975bm2ezB/IYLhREwDt0FCv0H9j7ytvOl+2wHZRA5EFgGAPmA8BXx0/iaAjYKog3kC5cEfvnP7yLuZvc4B54T1hMuBzX2mexh8Ir9xQkHDW0Hqf8O/Bz9j/4u/cj6+vtJAkUJSwpHA2v5rvR6+MQAaQb2BSYC4/+fACwBIP7M+AT3Kv12CNYPlwsx/Vvvgu2/+ZAKwhKYDDT+gfPN83b8xgRoBl8Cmv5L/9QCCgQMAK358vZK+xoE2gpyCgcDdvnH84z16v3oBzwNRwrQAN32k/JR9rP/XQnxDZQKlABP9cLvRvT0AOgNKRI2Civ7dO9H74/68ggOECsLuv7C9OP0KP7gBzQJFAFi99X13/7bCpEOZgUl9qbtufP6Az8RyBB8A8n0bPB3+IEEGgolBnD+7foE/isDSgTV//n5gviX/cwFxAooCDL/Gvai89H5HwT4CtEJrAK7+3z5SvuC/VH+ev8iA+gHIQmfA9j5x/Ip9GP98AflDEEKSgN4/ND3UPXD9Vz7XAaVESEUrQgt9Jrk6ebT+2cVwCC+FNL54ePt4sL2oQ8DG9URAf0y7XTtXvt7ChoPNwfJ+j/0FPgbAsgJOglqAcD4rvX5+QECKAj4COIEy/6f+S33bvix/ZQFIwxVDBUEbfcM7/vxSf+UDekRxwiV+dDwZfVlAmQL+Qfg+67zuPh3B/ERmQzv+Yzpp+oG/lYUBxtODEL0aOY+7eMByRLrEjoEivTC8Cb6xwZ/C5sF0/sA90L6hAFpBu4FxQGO/Zn7Gfwj/qoAwwK7Az8DcQG6/uL7Ufqx+3EAWgYeCa8Fj/2H9h32wPxBBUwJewbK/5v6XfpO/qACpQOkAGf8Hfvs/q0F3gnEBs38ffJK8Nf53QnlFLYRRAEQ77roFfMCBvcS8RCGA+L2gfRR+0oCfgIB/qL8QQKdCaoJ+v9o9L7xtfo2B4UMlAfO/l/6CPwD/9j+u/x9/f8CBQkMCS4B0vZf8uT3bQNXDGkMeQTb+sz1H/dc/PkBAwb8B1cHFQOW+2b0GPO++tcHTxEmD5oBLPKR7Cb1IQUtEJMOHAPG98H0EPoXAb0D9QF3AJAC3gXBBBH9AvRv8mT8zQs9FFYNAvto65Pr/ftgD5kVrwl99jTtwfVmB+sQAwlg92ftdPW0CHEVng/r+0zrqusP/G0OVBSeCpP66vCL80b+4gfvCdAE1/00+lP79v7wAcECEAI8AZ4AXP8F/SD7VfxvAWcHMgk5BDH7ZfTo9L/8CAdzDTEM0gOq+Lnw/fCb+hMJjRP8EYYDD/EU6HHw6ATsFb0VPgTG733ptfb9C6AWuAww9pnmn+zyBBgcHR5nB4jogNnF5kcHYCO3JjcP9e0v2pvgKPtgFt4fJxPq+y/sIe6c/NUIJwiZ/Sz2kfsUCrcTbA3n+eHnveW29ZQM/xq8GBMJdPaS6n7p1/Gk/ywOCRjAF8sKefUd4wLgP/ALC6ofBCHqDqP1rORg5B3yUASxEboVmBD+BBX3g+wP69b0KAVQEk8U/Aql/Yb0kfJS9dv5JgDZCLkQ5RBqBaHzN+jt7DH/RBGZFUIK5/nL8Wn25wC5BooDUPyP+dn+hActC5EFhPrA8n/0av7hCEgM8Abz/YL46flE/9cCqAEN/tz8RABoBRsH3AJi+3b2NPio/3gH7AlIBSf9uPft+F7/jgWOBvkBE/ze+e38bQL+BT0FBgEj/FT5I/py/ksEZQjGBxACe/oH9tr3q/63BZAIYQbSAQH+z/tP+l/5/foUAbYJlA7RCW/8de9G7W/4wAgNEnQOkQIm+C31Nvhk/Gf/mQIPBzoK3gdL/7X1TfLI9+oBlQmzCl8GUQB1+/L4Hfnx+5IABgUmB+0FEAJt/Qb6Mfk9+4T/kgRHCDsIGgOY+ujz0/SA/sgK3A+ACKD5Tu+x8ngBLg/kD9wCY/PT7vv4EgmcEbMLR/yR72Xv9PsDDLwTKw2o/PDtx+sG+A8KDhVREdQBzfFN7FL0LwMTDjMOQAUK+732mPk4/2ECjQF6/9L/SAN/BukEfv0F9RTzZvtICRcSvg1M/lPvyezV+LgJCxIiDEv+VvT69Cj9lQTjBVYC6/7g/i4BWQIuAAr84vnM/KkDFAmaByb/S/Yg9Zn9zQilDCUFnfg/8gH4BQXuDQsLEf9k9Lrzqvy8BogJKwQ3/ab7/v87BFoC4Pr+9AH49QNnEKgSywa98+vmbuo4/TsTih2eFMr9Dugk4h3wJQhjGWUYbwfz83nruvGO/0MK5wv8BT7+yflh+nb+twIqBAACK/7R+878SAC4AwsF0QObAEP8R/ht91f8Mgb1DrMOxwJF8unpjfFXBNQTIRQ+BpL2H/Ed993/CQPaAAYAqgS5CgAKX/9o8WnrpfOSBRgVbBeiCsv2l+g+6Yf4jgz6F/wSLQFr743qqPWeB1ES1w2X/mHx5vAl/bALbRB2Bz/4Wu8P9EoCEQ68DUICJfbk85P8TwfoCWYCW/hr9Yf8yAfZDXAJDf0N8SruwffZCDYWUhWnBKTuYONe7BkEQxkJHKsKxfI95intQQDrD0ERDAaV+f/18PuAA7sEHv9P+RL6rwHOCSsL1QPR+DDy5/Qd/68JkQ2wCOj+0fY/9Vz6AQLZBkQGFQKH/hf+av9c/xX9e/sY/ogElAmJByb+IPQ18oX79Qk5EtcM0Pz97fjrwvgGC34VChF3Abnxwuth8qkA1g1jEvMLmP6x8tnvevdoA6UK8Qg7Aij+xv9bAir/ZvYT8Wf4ugoQGl4X/ABK5ifcyuvDCtYi9yKvC8btS92x46v6UhKfHL4VTQQm84Pq8+wc+K8G+REHFPMKTPtd7lvsbfa3BTsQxA+yBWv57PKe9ZD+Dgd0CdwESv2C+Oj5PgCgBgwIFwMl+wv2yveL/z8IKAx8CAj/SPWC8e325ALEDcsPIgfS+WzxgfNZ/bEGIAkuBa0AFwDcAX8Am/lb8ujz0QHnE+MakQ3k8qDev+Ga+zcZUyRaFer4luR35VL3jgoCEkwM7AHV+9b7TP31+z75gPowAogL9g2NBeT36e8z9AUB1QucDD0EhPrA9jL6pQAXBWAFVwIj/gf7AfvL/oME6wdrBcD9cfbB9S39kQcFDSUJn/4A9f/yuvlKBHkLxApAA4/6mPZR+an/cgSgBFIBWP6z/gYCwAQHA2T8P/Vc9D79uwtKFZMQ8f1a6YjinPA2C5sfjh4iCAbs+t1t5/wAUxihHa4Oovcu6Q/shfuvCl4PBwn3/ur4WvmE/V4BzQLlAbf/v/3T/fQAaAW+Bo0B9/fI8Uz2ywQLE6oU4AU78EHkbOzxA5EZvBzNCnDx0+NW66IAuxJMFWkJJfoG8r7zNfstA7QIZgoGB7z+Y/XG8V34DAbWEIEP7wE58q3sn/XlBQIRPA8lA3/2DPJd9/8AvQcPCLYDF/8s/Yj9zf35/OL8CQDFBU8JzgUB/EXz3PPo/iYMQxDmBk73tu7W9KcEXRCCDXv+rfCl8L3+kA7xEYAFxfPj63T0KgajEqAQ4QJ+9GDvcPUBATsKSwxGB/3+Y/jv9sj62AAcBYIF9ALh/wT+n/0q/iX/HwCfAHYARgD1AEUCXQKh/z77SPkT/QgFrAoACKz9o/O68rT8IAptEJUK8fxW8abvv/iiBpAQKxBLBZX2pO2t8M/9FwzmEc8Lvf7q8w7yBPnDAnkIiwfDAgL/nv6j/6b+G/uk+JT7FAS2DDwOigUN92/sCu5V/HoO0xciEaf+ju0D6qf1kgbeDzgMaQHy+Rv7yQC6AqX98PYx9+MA7AzCEEIIpvnX7wvxh/q4BEsK9gqlCOsDafz387/vn/TtASMQkBWjDb38b+1g6SXzwARSE6AVDgo7+FLshO6v/MMLbBAvCCL7fPS1+DkCkweeBLf9S/of/UkCNASPAQ/+2f34AHMDjwEE/Pf3k/rGA/QMnQ3aAkXz8erS8VgELhVdF8YIDfRG6Fztlv4DD4sTkgoU/NzygfTf/XcGqgfXAU/7X/rH/1kGyAdFAg36wvXV+N4A6QdmCVMFRv/i+mn5L/qd/M8AJwbQCRMIGABP9hfytvfqA7ANVA38AtL2b/Lz+GYE6gpeB9T9ovdy+tQCxQfkAxv7xPYQ/GsGqwsKBg36i/Kg9goDHQ1eDL0BNPax8gr5nwPMCpMKMgTV+7715fRe+lgEkg1WD2AGBffk62fuYv6sEEYXzgxY+fLrLu6X/JcK4g23BuH9N/tt/uQA+f21+L74dwHRDOsPsQX59HHrtvFaA2YSCxNfBc30Qu6W9UMDyguxCSwB3/pr+/v/QAJi/9H6m/r0AGYJQgyBBdj4a+/g8En9qwyAFAYPZv+271/qEPMgBCwS0xNTCC/45+5b8nL++AhzChUEbf1j/Mr/3gFi/zL7wfrE/yIGGwjdA/z8xPjA+Wj+NwNqBT8E1ABn/Rb8jf1pAE8C5QHz/3L+sv5EALABzwGzAED/N/6+/cf9uf4wAa4EyQafBOH9YPbi83X5dgT/DZ0PsgeJ+rrvzu119joFphELFIAKqvpq7kTtHPeqBEgNLA37BgEAXvvK+FX3Bfjh/GEF2Ax6DZgF2fn68d7yFPumBAkKtAmtBaAA6fs0+On2y/mwADkIiQsiCCgAxvge9pr4sP2kAiYGwwfbBt8Ck/yt9rb0xfiVAZUKVA4OCtL/dvXz8K70Nv4oCIoNPAxaBSL8i/QG8ij2kf8BChQQ/g3nA4T2Te2T7vL6fgtUFTwRvQHG8VvsK/REAn8MTw18BvH9vfhw+Ij7bP80AoQDBgQmBB8DvP9d+kr22fcqAHwK0Q6sCNX71vEN8oD7VgYYC3QIhQK+/Vf7Yfqn+jL98gE4BpwGuwIV/o78Pf6F/6H9nfqp+xMDJAwvDrgEEvUz6+rvyAB4EZ8V8Apw+j/wm/E1+i8CxwXwBm8I6QgUBOv4zO3E7DH6lA7DGjMU0f6/6ifngfXJCGkR2wp1/iv5mf4mBtsEp/lL7+TxUAI6FLQYYAsO9jPohepS+SsJnxBLDjoHjABK+/r1VfHY8Y/78gvvGL4XbAY177zhOOeZ+ygRAhtKFZgFRvWo69XrB/VHAzYQOhU1DwwBg/KX67XvA/yTCXgRMRD2Bsn63PF48Nf2TAGNCmMOMgtBAon32vAj813+jguYEHcI9vg174v0QAWeEpkPJv2G6oTolPodE2QexRKd+IzjA+O19qUPIxzJFMQAG+8x6171VgT9DHkK7ABe+Qv6QQEhBwkFIfyz9Iv2TgExDLoNhASf+AT0SfnBAe8EYQGy/WYAxAexCoUClvP46pjy8garGCAZywbM7p7i9OqxAeEWExwfDvP2peZp6Lj6LhAVGQgPFfqm6pbsuv3ND00UUght9j/tPvNHAv4NYA4VBTP64vTV9hH9dAM4B2MHTwRe/8P60fiy+mz/KQQZBnEE3wDT/Yr8v/zf/cn/KAKlA6wCaP+H/BD9DgHBBNUD5/3U9+v3+f+JCpIO/Ab99//s5+8zAPIRmBZXCTv0hej47wIEVhNjEW0Bz/IW8qH9gAg3CPH+QvhH/McGigtoA6b02u2594sL9Rd7ELP5e+ba56T91RXmG7UKJ/EV5SbwuAf2FnQRgv1t7cjuCf8NDxkRUQRQ9HruEfehBtQQMA40AaTz7+7L9RUDBw4AEC0Igfud8Xvw2viEBWkO7Q3cBML5AfR49vb9fARBBgIEJQEFADAAwP/c/b37gfsn/pMCNwbFBrkDoP4E+hL4wvmp/vAEgQk3CUMDt/oe9W72pP13BbgIVQZ6Aff91fx3/K370Pst/0kFsQmTBw7/T/ad9J77lAVlCrAGZP7J+CP6eQDMBUYFN//i+EX45/75B+YLqwag+wnze/OV/I0HywyvCcEByPr295z4y/om/nADpgmqDC8Im/y98HvtnfbeBj4TEBN5Bj72Me2Q8AH9ywk4DxcLIwHa92/0Hvj5/+kG2AgbBcH+OfoX+l399wDTAlYDqQM+AxoANfrA9Xb4NwO8DlcQCgQ+8v3ph/OtB10VDRFp/5zw2/B7/ewI2Qi+/wX5dfwnBtwK4QNo9gbvy/VcBmwTHxIPA5PxhuqY8mYD7xBmEuoHbfmE8CDyJvydB0cN0QnV/3D2qPQF/K8GoQtKBvr6fvOT9u4BPAwcDe8D6/cA8hL2mwD0CfYL9QWx/MP2+ve8/mAFsAYTAu77x/me/VgEeQhdBsz+XPbG8pP3nQNrEOEULQu89pzkh+PN9y0V9yXOG4z8F9982ULvOQ8YIogcrAXZ7s/l7+wT/VYMmBNSEIUEJPZF7fvvg/0LDRsTnQoi+lTvW/MlArENJguY/R7zn/ZsBN4NigiB+XDwgvdhCBES3gmY9o/qFfJcB4QX5hNc/1vrQOh7964LFxVoDkX/EvR986H6wAEPBAMD4gLGBA4FCQCz93XzIfnfBT8PZAzq/kLymvF7/SILUQ50BND20fG4+SQHHg7WCEj8RfP59E//aQlUCzsEg/os9mD6GAOkCPwFKf369cX3lALJDXgOaQG+78HoyvSCDEgdOhhh/0DlW96Q8DUOByGUGx0DZOqz4nHvXwWgFGkUoQeC+HHwufJd/CcHAQ2KCt4A1PVK8cz38AVAEbsPwQBH79vpQPZ3C1cY4BEE/fHqleqz+w==" type="audio/x-wav" />
Your browser does not support the audio element.
</audio>
# time vector around event
times = time-tevent
# zoom in on [-0.2,0.05] seconds around event
irange = np.nonzero((times >= -0.2) & (times < 0.05))
# construct a data structure for a csv file:
dat = [times[irange], strain_H1_whitenbp[irange],strain_L1_whitenbp[irange],
template_H1[irange],template_L1[irange] ]
datcsv = np.array(dat).transpose()
# make a csv filename, header, and format
fncsv = eventname+'_data.csv'
headcsv = eventname+' time-'+str(tevent)+ \
' (s),H1_data_whitened,L1_data_whitened,H1_template_whitened,L1_template_whitened'
fmtcsv = ",".join(["%10.6f"] * 5)
np.savetxt(fncsv, datcsv, fmt=fmtcsv, header=headcsv)
print("Wrote whitened data to file {0}".format(fncsv))
print("You can download this file by clicking 'jupyter' in the top left corner, or using the 'data' menu in Azure.")
Wrote whitened data to file GW150914_data.csv
You can download this file by clicking 'jupyter' in the top left corner, or using the 'data' menu in Azure.